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System Monitoring

system	monitor	:	…	hardware	or	soIware	used	to	monitor	resources	and	
performance	in	a	computer	system	….	

altosoI	 idera	



Cloud Monitoring
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IOT		

Industry	4.0	
Automated	connected	systems	with	monitors	
Sensors	for	health	monitoring	

Focus	on	
•  soIware	systems		
•  alerFng	mechanism	
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-  AlerFng/paging	on	anomalies	
-  OpFmally	before	the	system	breaks,	noFfy	on-calls	
-  Combined	with	the	visuals,	the	goal	is	to	avoid	breaks,	

locate	the	root	cause	quickly	

-	Define	rules,	when	metrics	violate	your	rules,	send	
noFficaFon.	

RULES:	
•  X%	of	the	servers	should	be	up.	
•  Average	latency	should	be	below	T.	
•  The	number	of	servers	restarted	in	the	last	5	minutes	

should	be	less	than	0.05*total_server_count	
•  CPU	usage	is	above	TC.	
•  ….	



System Monitoring - Aler6ng

Mistakes	in	creaFng	alerts,	inaccuracies	at	the	setup	phase	is	expensive:	
•  False	negaFves:	The	system	fails	to	alert	when	necessary.		
•  E.g	Bad	weather,	connecFon	problem,	latency	for	a	cluster	is	high.	If	you	know,	you	would	act	on	it	

(redirect	the	traffic)	before	the	system	breaks.				(alerts	should	be	acFonable)	
•  False	posiFves:		Annoying,	you	see	the	alarm,	but	can	not	act	on	it.	The	system	alerts	when	there	is	

no	problem.	
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We	need	to	automate	the	process,	
IteraFvely	improve,	adapt	the	alerts	in	Fme.	
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We	need	to	fine	tune	the	alerts	for	every	server-metric,		
We	need	to	be	more	expressive,	
We	need	to	automate	the	process,	
IteraFvely	improve,	adapt	the	alerts	in	Fme.	

Express	the	alerts	in	a	formal	language	
Find	formulas	(alerts)	in	an	automated	way,			
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Eventually	a	 Globally	a	
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Signal	Temporal	Logic	 Real	Fme,	real	valued	predicates,				x	>	T		

G	(r	à	F	g	)	

G[0,t]	(r	à	F[0,	C]	g	)	

G[0,T]	(r[t]	>	0	à	F[0,	D]	g[t]	>	0	)	
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Signal Temporal Logic


G[0,SL ](x(t) > 6→ (F[0,10]G[0,20]x(t) < 6) G[0,SL ](¬G[0,15]x(t) > 6)



System Monitoring – Aler6ng - Examples


G[0,SL ](lat(t) < 35∧
(G[0,10](rate(t) < 30)→ (F[0,10]G[0,20]lat(t) < 20)))
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G[0,SL ](lat(t) < S1∧
(G[0,T1 ](rate(t) < S2 )→ (F[0,T2 ]G[0,T3 ]lat(t) < S3)))

Parameters:	S1,		S2,	S3,	T1,	T2,	T3	
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•  Template	and	parameters		

• How	to	perform	online	monitoring	with	STL?	
•  Detect	the	violaFon	as	soon	as	it	occurs.	
•  Perform	the	computaFon	with	limited	resources.	
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valuaNons	such	that	all	the	signals	saFsfy	the	formula.		
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Requirements mining 

• An	applicaFon	for	parameter	synthesis	problem	

CPS	
simulate	

minimize/maximize	
criFcal	parameters			

Template	formula	

SpecificaFon	in	STL	

+	
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Mining Requirements from
Closed-Loop Control Models

Xiaoqing Jin, Alexandre Donzé, Jyotirmoy V. Deshmukh, Sanjit A. Seshia

Abstract—Formal verification of a control system can be per-
formed by checking if a model of its dynamical behavior conforms
to temporal requirements. Unfortunately, adoption of formal
verification in an industrial setting is a formidable challenge
as design requirements are often vague, non-modular, evolving,
or sometimes simply unknown. We propose a framework to
mine requirements from a closed-loop model of an industrial-
scale control system, such as one specified in Simulink. The
input to our algorithm is a requirement template expressed in
Parametric Signal Temporal Logic: a logical formula in which
concrete signal or time values are replaced with parameters.
Given a set of simulation traces of the model, our method
infers values for the template parameters to obtain the strongest

candidate requirement satisfied by the traces. It then tries to
falsify the candidate requirement using a falsification tool. If a
counterexample is found, it is added to the existing set of traces
and these steps are repeated; otherwise, it terminates with the
synthesized requirement. Requirement mining has several usage
scenarios: mined requirements can be used to formally validate
future modifications of the model, they can be used to gain
better understanding of legacy models or code, and can also help
enhancing the process of bug-finding through simulations. We
demonstrate the scalability and utility of our technique on three
complex case studies in the domain of automotive powertrain
systems: a simple automatic transmission controller, an air-fuel
controller with a mean-value model of the engine dynamics, and
an industrial-size prototype airpath controller for a diesel engine.
We include results on a bug found in the prototype controller by
our method.

Index Terms—Model-based design; Parametric Temporal Log-
ics; Simulink; software engineering and verification

I. INTRODUCTION

Industrial-scale controllers used in automobiles and avionics
are now commonly developed using a model-based develop-
ment (MBD) paradigm [36], [42]. The MBD process consists
of a sequence of steps. In the first step, the designer captures
the plant model, i.e., the dynamical characteristics of the
physical parts of the system using differential, logic, and
algebraic equations. Examples of plant models include the
rotational dynamics model of the camshaft in an automobile
engine, the thermodynamic model of an internal combustion
engine, and atmospheric turbulence models. The next step is
to design a controller that employs some specific control law
to regulate the behavior of the physical system. The closed-

X. Jin and J. Deshmukh are with Toyota Technical Center e-mail:
{xiaoqing.jin,jyotirmoy.deshmukh}@tema.toyota.com.

A. Donzé and S. A. Seshia are with the University of California, Berkeley
e-mail: {donze,seshia}@eecs.berkeley.edu.

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

loop model consists of the composition of the plant and the
controller.

In the next step, the designer may perform extensive simu-
lations of the closed-loop model. The objective is to analyze
the controller design by observing the time-varying behavior of
the signals of interest by exciting the exogenous, time-varying
inputs of the closed-loop model. An important aspect of this
step is validation, i.e. checking if the time-varying behavior
of the closed-loop system matches a set of requirements.
Unfortunately, in practice, these requirements are high-level
and often vague. Examples of requirements the authors have
encountered in the automotive industry include “better fuel-
efficiency”, “signal should eventually settle”, and “resistance
to turbulence”. If the simulation behavior is deemed unsatis-
factory, then the designer refines or tunes the controller design
and repeats the validation step.

In the formal methods literature, a requirement (also called
a specification) is a mathematical expression of the design
goals or desirable design properties in a suitable logic. In
an industrial setting, many companies have made a strenuous
effort to document clear and concise requirements. However,
for systems built on legacy models or legacy code, require-
ments are normally not available. Moreover, to date, formal
validation tools have been unable to digest the format or
scale of industrial-scale requirements and models. As a result,
widespread adoption of formal tools has been restricted to
testing syntactic coverage of the controller code, which is
an open-loop system without the important behavior of the
physical system, with the hope that higher coverage implies
better chances of finding bugs.

In this paper, we propose a scalable technique to system-
atically mine requirements from the closed-loop model of
an industrial-scale control system from observations of the
system behavior. In addition to the closed-loop model, our
technique takes as input a template requirement. The final
output is a synthesized requirement matching the template.
We assume that the model is specified in Simulink [41], an
industry-wide standard that is able to: (1) express complex
dynamics (differential and algebraic equations), (2) capture
discrete state-machine behavior by allowing both Boolean and
real-valued variables, (3) allow a layered design approach
through modularity and hierarchical composition, and (4)
perform high-fidelity simulations.

Formalisms such as Metric Temporal Logic (MTL) [2], [31],
and later Parametric Signal Temporal Logic (PSTL) [9] have
emerged as logics adept at capturing both the real-valued and
time-varying behaviors of hybrid control systems. PSTL is
particularly well-suited to expressing template requirements

What	is	the	maximum	speed	that	the	vehicle	can	reach?	
What	is	the	minimum	dwell	Fme	in	a	given	var?	
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We include results on a bug found in the prototype controller by
our method.

Index Terms—Model-based design; Parametric Temporal Log-
ics; Simulink; software engineering and verification

I. INTRODUCTION

Industrial-scale controllers used in automobiles and avionics
are now commonly developed using a model-based develop-
ment (MBD) paradigm [36], [42]. The MBD process consists
of a sequence of steps. In the first step, the designer captures
the plant model, i.e., the dynamical characteristics of the
physical parts of the system using differential, logic, and
algebraic equations. Examples of plant models include the
rotational dynamics model of the camshaft in an automobile
engine, the thermodynamic model of an internal combustion
engine, and atmospheric turbulence models. The next step is
to design a controller that employs some specific control law
to regulate the behavior of the physical system. The closed-
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loop model consists of the composition of the plant and the
controller.

In the next step, the designer may perform extensive simu-
lations of the closed-loop model. The objective is to analyze
the controller design by observing the time-varying behavior of
the signals of interest by exciting the exogenous, time-varying
inputs of the closed-loop model. An important aspect of this
step is validation, i.e. checking if the time-varying behavior
of the closed-loop system matches a set of requirements.
Unfortunately, in practice, these requirements are high-level
and often vague. Examples of requirements the authors have
encountered in the automotive industry include “better fuel-
efficiency”, “signal should eventually settle”, and “resistance
to turbulence”. If the simulation behavior is deemed unsatis-
factory, then the designer refines or tunes the controller design
and repeats the validation step.

In the formal methods literature, a requirement (also called
a specification) is a mathematical expression of the design
goals or desirable design properties in a suitable logic. In
an industrial setting, many companies have made a strenuous
effort to document clear and concise requirements. However,
for systems built on legacy models or legacy code, require-
ments are normally not available. Moreover, to date, formal
validation tools have been unable to digest the format or
scale of industrial-scale requirements and models. As a result,
widespread adoption of formal tools has been restricted to
testing syntactic coverage of the controller code, which is
an open-loop system without the important behavior of the
physical system, with the hope that higher coverage implies
better chances of finding bugs.

In this paper, we propose a scalable technique to system-
atically mine requirements from the closed-loop model of
an industrial-scale control system from observations of the
system behavior. In addition to the closed-loop model, our
technique takes as input a template requirement. The final
output is a synthesized requirement matching the template.
We assume that the model is specified in Simulink [41], an
industry-wide standard that is able to: (1) express complex
dynamics (differential and algebraic equations), (2) capture
discrete state-machine behavior by allowing both Boolean and
real-valued variables, (3) allow a layered design approach
through modularity and hierarchical composition, and (4)
perform high-fidelity simulations.

Formalisms such as Metric Temporal Logic (MTL) [2], [31],
and later Parametric Signal Temporal Logic (PSTL) [9] have
emerged as logics adept at capturing both the real-valued and
time-varying behaviors of hybrid control systems. PSTL is
particularly well-suited to expressing template requirements

What	is	the	maximum	speed	that	the	vehicle	can	reach?	
What	is	the	minimum	dwell	Fme	in	a	given	var?	

Falsifier	

OK	or		
ViolaFng	trace	
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Abstract. We present a novel approach to learn logical formulae characterising
the emergent behaviour of a dynamical system from system observations. At a
high level, the approach starts by devising a data-driven statistical abstraction of
the system. We then propose general optimisation strategies for selecting formu-
lae with high satisfaction probability, either within a discrete set of formulae of
bounded complexity, or a parametric family of formulae. We illustrate and ap-
ply the methodology on two real world case studies: characterising the dynamics
of a biological circadian oscillator, and discriminating different types of cardiac
malfunction from electro-cardiogram data. Our results demonstrate that this ap-
proach provides a statistically principled and generally usable tool to logically
characterise dynamical systems in terms of temporal logic formulae.

1 Introduction

Dynamical systems are among the most widely used modelling frameworks, with im-
portant applications in all domains of science and engineering. Much of the attraction
of dynamical systems modelling lies in the availability of effective simulation tools,
enabling predictive modelling, and in the possibility of encoding complex behaviours
through the interaction of multiple, simple components. This leads naturally to the no-
tion of emergent properties, i.e. properties of the system trajectories which are a non-
trivial consequence of the local interaction rules of the system components. Emergent
properties of deterministic dynamical systems can often be easily verified through sim-
ulations. Quantitatively identifying the emergent properties of a stochastic system, in-
stead, is a much harder problem.

In the simplest scenario, one assumes that a mathematical model of the system of
interest is already available (e.g. as a continuous time Markov chain, or a stochastic dif-
ferential equation), generally thanks to the availability of domain expertise. This prob-
lem is often termed mining requirements: this is an active field of research, with many
recent contributions extending its scalability and applicability [18,27]. This approach
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ABSTRACT

This paper presents an inference algorithm that can discover
temporal logic properties of a system from data. Our algo-
rithm operates on finite time system trajectories that are
labeled according to whether or not they demonstrate some
desirable system properties (e.g. “the car successfully stops
before hitting an obstruction”). A temporal logic formula
that can discriminate between the desirable behaviors and
the undesirable ones is constructed. The formulae also in-
dicate possible causes for each set of behaviors (e.g. “If the
speed of the car is greater than 15 m/s within 0.5s of brake
application, the obstruction will be struck”) which can be
used to tune designs or to perform on-line monitoring to
ensure the desired behavior. We introduce reactive parame-
ter signal temporal logic (rPSTL), a fragment of parameter
signal temporal logic (PSTL) that is expressive enough to
capture causal, spatial, and temporal relationships in data.
We define a partial order over the set of rPSTL formulae
that is based on language inclusion. This order enables a
directed search over this set, i.e. given a candidate rPSTL
formula that does not adequately match the observed data,
we can automatically construct a formula that will fit the
data at least as well. Two case studies, one involving a cattle
herding scenario and one involving a stochastic hybrid gene
circuit model, are presented to illustrate our approach.

Categories and Subject Descriptors

I.2.6 [Learning]: Knowledge Acquisition; D.2.1 [Software
Engineering]: Requirements/Specifications; F.4.3 [
Mathematical Logic and Formal Languages]: Formal
Languages; D.4.7 [Organization and Design]: Real-Time
Systems and Embedded Systems
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1. INTRODUCTION
Reverse engineering has always been a cornerstone of phys-

ical and biological science. Given a set of input-output pairs,
one can interpret and predict the behavior of the underly-
ing system by inferring properties that are compatible with
this data. Reverse engineering can largely be divided into
three areas: system identification [16], machine learning [21],
and inductive logic programming [15]. In general, properties
inferred from reverse engineering can either describe the dy-
namics of a system or capture some high-level specification
that the system satisfies. Inferring dynamics can be a chal-
lenging task if very little is known about the system. On
the other hand, inferred specifications might be too “coarse-
grained” to be useful for problems of interest. Temporal
logics [11] bridge these two extremes by incorporating quan-
titative temporal and spatial constraints when describing
dynamic behaviors. For instance, we can use temporal log-
ics to express invariance properties such as “If x is greater
than xr, then within T1 seconds, it will drop below xr and
remain below xr for at least T2 seconds”.

In this paper, we address the problem of inferring a tem-
poral logic formula that can be used to distinguish between
desirable system behaviors, e.g. an airplane lands in some
goal configuration on the tarmac, and undesirable behaviors,
e.g. the airplane’s descent is deemed unsafe. Moreover, in
our approach, the inferred formulae can be used as predic-
tive templates for either set of behaviors. This in turn can
be used for on-line system monitoring, e.g. aborting a land-
ing if the descent pattern is consistent with unsafe behavior.
Since our procedure is automatic and unsupervised beyond
the initial labeling of the signals, it is possible that it can
discover properties of the system that were previously un-
known to designers, e.g. changing the direction of banking
too quickly will drive the airplane to an unsafe configuration.
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Introduced	a	preorder	for	a	subset	of	STL	
Search	on	both	parameter	space	and	
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Search	over	the	parameter	space.	
QuanFtaFve	valuaFon	plays	a	key	role.	

Find	a	feasible	range	for	S,	T	
Define	minimum	robustness	parameter	
Use	monotonicity	properFes	

ΦT ,S =G[0,SL ](F[0,T ]x(t) < S)

Q(ΦT ,S, x) :quanFtaFve	evaluaFon	of	x	

MulF-criteria	opFmizaFon	problem	

Q(ΦT ,S, x) ≥ 0

Find	T,S	such	that:	
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• Monotonicity	
•  Easy	for	simple	cases	
• Gets	harder	with:	

•  Nested	formulas	
•  MulF-dimensional	opFmizaFon	
•  MulFple	signals	to	consider	
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x	>	S	 Decrease		
x	<	S	 Increase	
F[0.T]	A	 Increase	
G[0.T]	A	 Decrease	
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• Monotonicity	

Use	binary	search	to	find	the	Fghtest	parameter	(gamma	Fght).	
The	search	order	of	the	parameter	is	given	by	the	user.	
	
Unfortunately,	not	all	the	formulas	are	monotonic	(	a	U[t,	t	+	5]	b).	
	
	

• Methods	for	opFmizing	the	parameter	search	is	needed.	
•  EvaluaFon	of	a	parameter	valuaFon	requires	compuFng	the	quanFtaFve	evaluaFon	
for	every	signal	in	the	set		
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• Ongoing	work:	
•  IdenFfy	a	set	of	basic		template	formulas:	ExisFng	works	depend	on	a	given	
parametric	formula	

	
• Develop	a	search	algorithm	over	the	defined	set	(combine	basic	formulas	
and	find	parameters)	

	
• OpFmize	the	search	algorithm:	Define	a	preorder	over	the	set	of	signals	
with	respect	to	the	basic	parametric	formulas.	
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•  IdenFfy	a	set	of	basic		template	formulas	

•  The	main	formula	is	in	G[0,	SL]	(A1	and	A2	and	….	An	)	form	

• Basic	parametric	template	formulas	for	Ai	and	their	analyses	
1.  	x	<	S	
2.  F[0,	T]	x	<	S	

3.  	F[0,	T]	G[0,	T2]	x	<	S	

4.  …	
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• Develop	a	search	algorithm	over	the	defined	set	(combine	basic	formulas	
and	find	parameters)	
1.  	Ai	à	Aj		

2.  Ai	and	Aj	

3.  Ai	U[0,T]	Aj		

•  OpFmize	the	search	algorithm:	Define	a	preorder	over	the	set	of	signals	with	respect	
to	the	basic	parametric	formulas.	



Conclusion

• Monitoring	and	smart	alerFng	is	essenFal	for	hardware	and	soIware	
systems.	

• Defining	effecFve	alerFng	rules	is	an	hard	problem:	
•  Expressivity	
•  Automated	methods	to	“pick”	best	rules.	

•  It	can	be	cast	as	a	PSTL	parameter	synthesis	problem.		

• Parameter	synthesis	methods	relay	on	monotonicity	properFes	of	the	
parameters.		
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•  Parameter	synthesis	methods	relay	on	monotonicity	properFes	of	the	parameters.		

•  STL	Parameter	synthesis	has	various	applicaFons:	
•  Requirement	mining	for	CPS	
•  Systems	and	syntheFc	biology		(automaFcally	characterize	and	analyze	models	from	
experimental	data,	e.g.	blood	vessel	sprouFng,	the	programmed	cell	death,	….	)	

•  SoIware	monitoring,	release	evaluaFon	(ongoing	work)	


