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System Monitoring

system monitor : ... hardware or software used to monitor resources and
erformance in a computer system ....
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Cloud Monitoring
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System Monitoring
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* Visualize the performance and health
* Quickly gain insight in possible problems
* Analyze root-cause

* Here the focus is on software systems
* Various systems are monitored
* Power systems
 Human/health, driver etc.



System Monitoring
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* Visualize the performance and health
* Quickly gain insight in possible problems
* Analyze root-cause

* Here the focus is on software systems
* Various systems are monitored
* Power systems
 Human/health, driver etc.

Industry 4.0
Automated connected systems with monitors
Sensors for health monitoring



System Monitoring

* Visualize the performance and health
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System Monitoring - Alerting

- Alerting/paging on anomalies

- Optimally before the system breaks, notify on-calls

- Combined with the visuals, the goal is to avoid breaks,
locate the root cause quickly
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System Monitoring - Alerting

- Alerting/paging on anomalies

- Optimally before the system breaks, notify on-calls

- Combined with the visuals, the goal is to avoid breaks,
locate the root cause quickly

- Define rules, when metrics violate your rules, send
notification.

RULES:

* X% of the servers should be up.

* Average latency should be below T.

* The number of servers restarted in the last 5 minutes

should be less than 0.05*total _server_ count
* CPU usage is above TC.



System Monitoring - Alerting

Mistakes in creating alerts, inaccuracies at the setup phase is expensive:

* False negatives: The system fails to alert when necessary.

* E.g Bad weather, connection problem, latency for a cluster is high. If you know, you would act on it
(redirect the traffic) before the system breaks. (alerts should be actionable)

* False positives: Annoying, you see the alarm, but can not act on it. The system alerts when there is
no problem.
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System Monitoring - Alerting

Mistakes in creating alerts, inaccuracies at the setup phase is expensive:

* False negatives: The system fails to alert when necessary.

* E.g Bad weather, connection problem, latency for a cluster is high. If you know, you would act on it
(redirect the traffic) before the system breaks.

* False positives: Annoying, you see the alarm, but can not act on it. The system alerts when there is

no problem.
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System Monitoring — Alerting - Examples

25

20 -
S
0)15_

| |
0 50 100 150 200 250 300



System Monitoring — Alerting - Examples

SSSSSSS

Update

SSSSSSS



System Monitoring — Alerting - Examples
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System Monitoring - Alerting
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We need to fine tune the alerts for every server-metric,
We need to be more expressive,

We need to automate the process,

Iteratively improve, adapt the alerts in time.
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Express the alerts in a formal language
Find formulas (alerts) in an automated way,

We need to fine tune the alerts for every server-metric,
We need to be more expressive,

We need to automate the process,

Iteratively improve, adapt the alerts in time.



Linear Temporal Logic
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Temporal operators: G, U, X



Linear Temporal Logic
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Metric Temporal Logic
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Primarily used in model checking
Metric extensions preferred for
monitoring

G(r>Fg)

Real time, boolean predicates
Gioy (r 2 Fio. 1 8)



Linear Temporal Logic
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Metric Temporal Logic
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Signal Temporal Logic Real time, real valued predicates,

Primarily used in model checking
Metric extensions preferred for
monitoring
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Signal Temporal Logic

* Predicates are over real values (signals), real time
* Allows for quantitative semantics
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Signal Temporal Logic F®=TU, @
Gy ® = -1y, = P)
* Predicates are over real values (signals), real time

* Allows for quantitative semantics
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Sighal Temporal Logic
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Sighal Temporal Logic
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Signal Temporal Logic
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request latency

# request per second

System Monitoring — Alerting - Examples
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System Monitoring — Alerting - Examples
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STL for Monitoring

* How to find the “optimal” formula?
* Template and parameters

* How to perform online monitoring with STL?
* Detect the violation as soon as it occurs.
* Perform the computation with limited resources.



STL for Monitoring

* How to find the “optimal” formula?
 Template and parameters

Jin, X., Donzé, A., Deshmukh, J. V., Seshia, S.A. 2013. “Mining requirements from closed-loop control models”. Proceedings of the
International Conference on Hybrid Systems: Computation and Control. 43-52

Bartocci, E., Bortolussi, L., Sanguinetti, G. 2014. “Data-driven Statistical Learning of Temporal Logic Properties”. Formal Modeling and
Analysis of Timed Systems. Edidorler: Legay A., Bozga M. Springer International Publishing.

Kong Z., Jones A., Ayala, A.A., Aydin Gol, E., Belta, C. 2014. “Temporal Logic Inference for Classification and Prediction from
Data”. Proceedings of the International Conference on Hybrid Systems: Computation and Control. 273-282.

* How to perform online monitoring with STL?
* Detect the violation as soon as it occurs.
* Perform the computation with limited resources.

Eisner, C., Fisman, D., Havlicek, D., Lustig Y., Mclsaac, A., Van Campenhout, D. 2003. “Reasoning with Temporal Logic on Truncated
Paths”. Computer Aided Verification. : A. H. Warren, F. Somenzi. Springer International Publishing.

Dokhanchi, A., Hoxha B., Fainekos, G. 2014. “On-line Monitoring for Temporal Logic Robustness”. Runtime Verification.
Bonakdarpour B., Smolka S.A. Springer, Cham
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Parametric STL and parameter synthesis problem

* Given a set of signals, and a parametric STL formula, find parameter
valuations such that all the signals satisfy the formula.

G5 (lat(t) < S A
(G[O,T1 [(rate(t)< §,) — (F[O’TZ]G[O’Tﬂlat(t) <3$,)))
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Parametric STL and parameter synthesis problem

* Given a set of signals, and a parametric STL formula, find parameter
valuations such that all the signals satisfy the formula.

* Given a set of signals, and a parametric STL formula, find tightest
parameter valuations such that all the signals satisfy the formula.

* Given a set of positive signals and a set of negative signals, and a
parametric STL formula, find tightest parameter valuations such that all the
positive signals satisfy the formula and all the negative signals violate the

formula.
G5, (lat(t) < S, A

(G[O,T1 [(rate(t)< §,) — (F[O,TZ]G[O’Tﬂlat(t) <3$,)))



Requirements mining

* An application for parameter synthesis problem
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Specification in STL

What is the maximum speed that the vehicle can reach?
What is the minimum dwell time in a given var?

Mining Requirements from
Closed-Loop Control Models

Xiaoqing Jin, Alexandre Donzé, Jyotirmoy V. Deshmukh, Sanjit A. Seshia

Abstract—Formal verification of a control system can be per-
formed by checking if a model of its dynamical behavior conforms
to temporal i Unfor ion of formal
verification in an industrial setting is a formidable challenge
as design requirements are often vague, non-modular, evolving,
or sometimes simply unknown. We propose a framework to
mine requirements from a closed-loop model of an industrial-
scale control system, such as one specified in Simulink. The
input to our algorithm is a requirement template expressed in
Parametric Signal Temporal Logic: a logical formula in which
concrete signal or time values are replaced with parameters.
Given a set of simulation traces of the model, our method
infers values for the template parameters to obtain the strongest
candidate requirement satisfied by the traces. It then tries to
falsify the candidate requirement using a falsification tool. If a
counterexample is found, it is added to the existing set of traces
and these steps are repeated; otherwise, it terminates with the
synthesized requirement. Requirement mining has several usage
scenarios: mined requirements can be used to formally validate
future modifications of the model, they can be used to gain
better understanding of legacy models or code, and can also help
enhancing the process of bug-finding through simulations. We
demonstrate the scalability and utility of our technique on three
complex case studies in the domain of automotive powertrain
systems: a simple automatic transmission controller, an air-fuel
controller with a mean-value model of the engine dynamics, and
an industrial-size prototype airpath controller for a diesel engine.
‘We include results on a bug found in the prototype controller by
our method.

Index Terms—Model-based design; Parametric Temporal Log-
ics; Simulink; software engineering and verification

1. INTRODUCTION

Industrial-scale controllers used in automobiles and avionics
are now commonly developed using a model-based develop-
ment (MBD) paradigm [36], [42]. The MBD process consists
of a sequence of steps. In the first step, the designer captures
the plant model, i.e., the dynamical characteristics of the
physical parts of the system using differential, logic, and
algebraic equations. Examples of plant models include the
rotational dynamics model of the camshaft in an automobile
engine, the thermodynamic model of an internal combustion
engine, and atmospheric turbulence models. The next step is
to design a controller that employs some specific control law
to regulate the behavior of the physical system. The closed-

X. Jin and J. Deshmukh are with Toyota Technical Center e-mail:
{xiaogingjin,jyotirmoy.deshmukh} @tema.toyota.com.

A. Donzé and S. A. Seshia are with the University of California, Berkeley
e-mail: {donze,seshia} @eecs.berkeley.edu.

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions @icee.org.

loop model consists of the composition of the plant and the
controller.

In the next step, the designer may perform extensive simu-
lations of the closed-loop model. The objective is to analyze
the controller design by observing the time-varying behavior of
the signals of interest by exciting the exogenous, time-varying
inputs of the closed-loop model. An important aspect of this
step is validation, i.e. checking if the time-varying behavior
of the closed-loop system matches a set of requirements.
Unfortunately, in practice, these requirements are high-level
and often vague. Examples of requirements the authors have
encountered in the automotive industry include “better fuel-
efficiency”, “signal should Ily settle”, and “resi
to turbulence”. If the simulation behavior is deemed unsatis-
factory, then the designer refines or tunes the controller design
and repeats the validation step.

In the formal methods literature, a requirement (also called
a specification) is a mathematical expression of the design
goals or desirable design properties in a suitable logic. In
an industrial setting, many companies have made a strenuous
effort to document clear and concise requirements. However,
for systems built on legacy models or legacy code, require-
ments are normally not available. Moreover, to date, formal
validation tools have been unable to digest the format or
scale of industrial-scale requirements and models. As a result,
widespread adoption of formal tools has been restricted to
testing syntactic coverage of the controller code, which is
an open-loop system without the important behavior of the
physical system, with the hope that higher coverage implies
better chances of finding bugs.

In this paper, we propose a scalable technique to system-
atically mine requirements from the closed-loop model of
an industrial-scale control system from observations of the
system behavior. In addition to the closed-loop model, our
technique takes as input a template requirement. The final
output is a synthesized requirement matching the template.
We assume that the model is specified in Simulink [41], an
industry-wide standard that is able to: (1) express complex
dynamics (differential and algebraic equations), (2) capture
discrete state-machine behavior by allowing both Boolean and
real-valued variables, (3) allow a layered design approach
through modularity and hierarchical composition, and (4)
perform high-fidelity simulations.

Formalisms such as Metric Temporal Logic (MTL) [2], [31],
and later Parametric Signal Temporal Logic (PSTL) [9] have
emerged as logics adept at capturing both the real-valued and
time-varying behaviors of hybrid control systems. PSTL is
particularly well-suited to expressing template requirements
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Mining Requirements from
Closed-Loop Control Models

Xiaoqing Jin, Alexandre Donzé, Jyotirmoy V. Deshmukh, Sanjit A. Seshia

Abstract—Formal verification of a control system can be per-
formed by checking if a model of its dynamical behavior conforms
to temporal i Unfor ion of formal
verification in an industrial setting is a formidable challenge
as design requirements are often vague, non-modular, evolving,
or sometimes simply unknown. We propose a framework to
mine requirements from a closed-loop model of an industrial-
scale control system, such as one specified in Simulink. The
input to our algorithm is a requirement template expressed in
Parametric Signal Temporal Logic: a logical formula in which
concrete signal or time values are replaced with parameters.
Given a set of simulation traces of the model, our method
infers values for the template parameters to obtain the strongest
candidate requirement satisfied by the traces. It then tries to
falsify the candidate requirement using a falsification tool. If a
counterexample is found, it is added to the existing set of traces
and these steps are repeated; otherwise, it terminates with the
synthesized requirement. Requirement mining has several usage
scenarios: mined requirements can be used to formally validate
future modifications of the model, they can be used to gain
better understanding of legacy models or code, and can also help
enhancing the process of bug-finding through simulations. We
demonstrate the scalability and utility of our technique on three
complex case studies in the domain of automotive powertrain
systems: a simple automatic transmission controller, an air-fuel
controller with a mean-value model of the engine dynamics, and
an industrial-size prototype airpath controller for a diesel engine.
‘We include results on a bug found in the prototype controller by
our method.

Index Terms—Model-based design; Parametric Temporal Log-
ics; Simulink; software engineering and verification

1. INTRODUCTION

Industrial-scale controllers used in automobiles and avionics
are now commonly developed using a model-based develop-
ment (MBD) paradigm [36], [42]. The MBD process consists
of a sequence of steps. In the first step, the designer captures
the plant model, i.e., the dynamical characteristics of the
physical parts of the system using differential, logic, and
algebraic equations. Examples of plant models include the
rotational dynamics model of the camshaft in an automobile
engine, the thermodynamic model of an internal combustion
engine, and atmospheric turbulence models. The next step is
to design a controller that employs some specific control law
to regulate the behavior of the physical system. The closed-
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loop model consists of the composition of the plant and the
controller.

In the next step, the designer may perform extensive simu-
lations of the closed-loop model. The objective is to analyze
the controller design by observing the time-varying behavior of
the signals of interest by exciting the exogenous, time-varying
inputs of the closed-loop model. An important aspect of this
step is validation, i.e. checking if the time-varying behavior
of the closed-loop system matches a set of requirements.
Unfortunately, in practice, these requirements are high-level
and often vague. Examples of requirements the authors have
encountered in the automotive industry include “better fuel-
efficiency”, “signal should Ily settle”, and “resi
to turbulence”. If the simulation behavior is deemed unsatis-
factory, then the designer refines or tunes the controller design
and repeats the validation step.

In the formal methods literature, a requirement (also called
a specification) is a mathematical expression of the design
goals or desirable design properties in a suitable logic. In
an industrial setting, many companies have made a strenuous
effort to document clear and concise requirements. However,
for systems built on legacy models or legacy code, require-
ments are normally not available. Moreover, to date, formal
validation tools have been unable to digest the format or
scale of industrial-scale requirements and models. As a result,
widespread adoption of formal tools has been restricted to
testing syntactic coverage of the controller code, which is
an open-loop system without the important behavior of the
physical system, with the hope that higher coverage implies
better chances of finding bugs.

In this paper, we propose a scalable technique to system-
atically mine requirements from the closed-loop model of
an industrial-scale control system from observations of the
system behavior. In addition to the closed-loop model, our
technique takes as input a template requirement. The final
output is a synthesized requirement matching the template.
We assume that the model is specified in Simulink [41], an
industry-wide standard that is able to: (1) express complex
dynamics (differential and algebraic equations), (2) capture
discrete state-machine behavior by allowing both Boolean and
real-valued variables, (3) allow a layered design approach
through modularity and hierarchical composition, and (4)
perform high-fidelity simulations.

Formalisms such as Metric Temporal Logic (MTL) [2], [31],
and later Parametric Signal Temporal Logic (PSTL) [9] have
emerged as logics adept at capturing both the real-valued and
time-varying behaviors of hybrid control systems. PSTL is
particularly well-suited to expressing template requirements
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Abstract. We present a novel approach to learn logical formulae characterising
the emergent behaviour of a dynamical system from system observations. At a
high level, the approach starts by devising a data-driven statistical abstraction of
the system. We then propose general optimisation strategies for selecting formu-
lae with high satisfaction probability, either within a discrete set of formulae of
bounded complexity, or a parametric family of formulae. We illustrate and ap-
ply the methodology on two real world case studies: characterising the dynamics
of a biological circadian oscillator, and discriminating different types of cardiac
malfunction from electro-cardiogram data. Our results demonstrate that this ap-
proach provides a statistically principled and generally usable tool to logically
characterise dynamical systems in terms of temporal logic formulae.

1 Introduction

Dynamical systems are among the most widely used modelling frameworks, with im-
portant applications in all domains of science and engineering. Much of the attraction
of dynamical systems modelling lies in the availability of effective simulation tools,
enabling predictive modelling, and in the possibility of encoding complex behaviours
through the interaction of multiple, simple components. This leads naturally to the no-
tion of emergent properties, i.e. properties of the system trajectories which are a non-
trivial consequence of the local interaction rules of the system components. Emergent
properties of deterministic dynamical systems can often be easily verified through sim-
ulations. Quantitatively identifying the emergent properties of a stochastic system, in-
stead, is a much harder problem.

In the simplest scenario, one assumes that a mathematical model of the system of
interest is already available (e.g. as a continuous time Markov chain, or a stochastic dif-
ferential equation), generally thanks to the availability of domain expertise. This prob-
lem is often termed mining requirements: this is an active field of research, with many
recent contributions extending its scalability and applicability [18,27]. This approach

* L.B. acknowledges partial support from the EU-FET project QUANTICOL (nr. 600708) and
by FRA-UniTS. G.S. acknowledges support from the ERC under grant MLCS306999. E.B.
acknowledges the support of the Austrian FFG project HARMONIA (nr. 845631).
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Abstract. We present a novel approach to learn logical formulae characterising
the emergent behaviour of a dynamical system from system observations. At a
high level, the approach starts by devising a data-driven statistical abstraction of
the system. We then propose general optimisation strategies for selecting formu-
lae with high satisfaction probability, either within a discrete set of formulae of
bounded complexity, or a parametric family of formulae. We illustrate and ap-
ply the methodology on two real world case studies: characterising the dynamics
of a biological circadian oscillator, and discriminating different types of cardiac
malfunction from electro-cardiogram data. Our results demonstrate that this ap-
proach provides a statistically principled and generally usable tool to logically
characterise dynamical systems in terms of temporal logic formulae.

1 Introduction

Dynamical systems are among the most widely used modelling frameworks, with im-
portant applications in all domains of science and engineering. Much of the attraction
of dynamical systems modelling lies in the availability of effective simulation tools,
enabling predictive modelling, and in the possibility of encoding complex behaviours
through the interaction of multiple, simple components. This leads naturally to the no-
tion of emergent properties, i.e. properties of the system trajectories which are a non-
trivial consequence of the local interaction rules of the system components. Emergent
properties of deterministic dynamical systems can often be easily verified through sim-
ulations. Quantitatively identifying the emergent properties of a stochastic system, in-
stead, is a much harder problem.

In the simplest scenario, one assumes that a mathematical model of the system of
interest is already available (e.g. as a continuous time Markov chain, or a stochastic dif-
ferential equation), generally thanks to the availability of domain expertise. This prob-
lem is often termed mining requirements: this is an active field of research, with many
recent contributions extending its scalability and applicability [18,27]. This approach
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PSTL parameter synthesis

* Monotonicity

* Easy for simple cases X>5
: X<S

e Gets harder with: —
* Nested formulas [0.T]

* Multi-dimensional optimization G A

* Multiple signals to consider
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PSTL parameter synthesis

* Monotonicity

: X > Decrease
* Easy for simple cases
: X < Increase
* Gets harder with: - |
ncr
* Nested formulas L crease
» Multi-dimensional optimization | G A Decrease

* Multiple signals to consider

e Use binary search to find the tightest parameter (gamma tight).
* The search order of the parameter is given by the user.

* Unfortunately, not all the formulas are monotonic (a Uy, , 5 b).



PSTL parameter synthesis

* Monotonicity
Use binary search to find the tightest parameter (gamma tight).
The search order of the parameter is given by the user.

Unfortunately, not all the formulas are monotonic (a Uy, ,, 5, b).

* Methods for optimizing the parameter search is needed.

* Evaluation of a parameter valuation requires computing the quantitative evaluation
for every signal in the set



PSTL synthesis for mining monitoring specifications

* Ongoing work:
* |[dentify a set of basic template formulas: Existing works depend on a given
parametric formula

* Develop a search algorithm over the defined set (combine basic formulas
and find parameters)

* Optimize the search algorithm: Define a preorder over the set of signals
with respect to the basic parametric formulas.



PSTL synthesis for mining monitoring specifications

* |dentify a set of basic template formulas
* The main formula is in Gy, 5, (A;and A,and ... A ) form

* Basic parametric template formulas for A, and their analyses
1. x<S

Fmﬂx<S

2
3. Fo1GpmX<S
4



PSTL synthesis for mining monitoring specifications

* Develop a search algorithm over the defined set (combine basic formulas
and find parameters)

1. A2A
2.  Ajand A
3. AUppA

* Optimize the search algorithm: Define a preorder over the set of signals with respect
to the basic parametric formulas.



Conclusion

* Monitoring and smart alerting is essential for hardware and software
systems.

* Defining effective alerting rules is an hard problem:
* Expressivity
* Automated methods to “pick” best rules.

* It can be cast as a PSTL parameter synthesis problem.

* Parameter synthesis methods relay on monotonicity properties of the
parameters.



Conclusion

Monitoring and smart alerting is essential for hardware and software systems.

Defining effective alerting rules is an hard problem:
* Expressivity
* Automated methods to “pick” best rules.

It can be cast as a PSTL parameter synthesis problem.

Parameter synthesis methods relay on monotonicity properties of the parameters.

e STL Parameter synthesis has various applications:

* Requirement mining for CPS

e Systems and synthetic biology (automatically characterize and analyze models from
experimental data, e.g. blood vessel sprouting, the programmed cell death, ....)

e Software monitoring, release evaluation (ongoing work)



