
An Incremental Constraint
Satisfaction Algorithm

for Dynamic Reconfiguration

Sina Entekhabi

Ahmet Serkan Karataş

Halit Oğuztüzün

ODTÜ, Ankara

IZTECH Dependability, 8 May 2017

Supported by TÜBİTAK-ARDEB-1001 program under project 215E188. 1

Outline
• Introduction

• Problem definition

• Related works

• Incremental algorithm

• Tracing example

• Conclusion

• References

2

Introduction(1/4)
• Software Product Line (SPL)

o A series of similar systems

o Sharing common cores with some

differences

o Variability management before runtime

o Ex: smartphones

• Dynamic SPL (DSPL)
o Variability management at runtime

o Ex: Smart homes

3

Introduction(2/4)
• Variability Management

o Ex: Feature model (FM) diagram

o SPL: Some of the features in a product

o DSPL:

• All of the features in a DSPL product

• Runtime reconfigurations regarding context condition

4
Feature model diagram of a smart home[3]

Introduction(3/4)
• Constraint Logic Program

o Containing constraints in the body of clauses

o Ex: A(x, y):- x>0, y>1, B(x)

• FM relations can be expressed as clauses of logical
expressions
o Ex:

• “𝐴 excludes 𝐵” as “¬ 𝐴 ∧ 𝐵 “

• “𝐴 requires 𝐵” as “A ⟹ 𝐵”

• “𝐴 is the parent of 𝐵, in a mandatory relation” as “A ⇔ 𝐵"

• “𝐴 is the parent of 𝐵, in an optional relation” as “B ⟹ 𝐴”

• “𝐴 is the parent of 𝐵 and C, in an ‘OR’ relation” as “𝐵 ∨ 𝐶 ⟹ 𝐴"

• “𝐴 is the parent of 𝐵 and C, in an alternative relation” as

 “((B ∧ ~𝐶) ∨ (~B ∧ 𝐶)) ⇔ 𝐴”

5

Introduction(4/4)
• Runtime DSPL reconfiguration

• Effective reconfiguration criteria:
o Imposing the minimum number of changes to the current product

6

Context Monitor

Condition 1 Resolution 1

Condition 2 Resolution 2

…. ….

Condition N Resolution N

The context monitor specifies activation and/or deactivation of some

of the features in specific conditions[4]

Problem Definition(1/2)
• The whole FM as a constraint network

o Every relation as a constraint

o Reaching o valid DSPL product by satisfying all of the constraints

• DSPL reconfiguration problem as Constraint

Satisfaction Problem(CSP)

7

Problem Definition(2/2)
Having a constraint network including a set of variables 𝑉:

 𝑉 = 𝑣1, 𝑣2, … , 𝑣𝑛 𝑤ℎ𝑒𝑟𝑒 𝑣𝑖𝜖𝐷𝑖 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛,

and a set of satisfied constraints C among variables in V:

 C = 𝑐1, 𝑐2, … , 𝑐𝑘 ,

and a resolution R:

 R = 𝑣𝑗1 ⟵ 𝑎1
′ , 𝑣𝑗2 ⟵ 𝑎2

′ , … , 𝑣𝑗𝑚 ⟵ 𝑎𝑚
′ ,

where the variables have the previous values:

 𝑣𝑗𝑟 = 𝑎𝑟 𝑓𝑜𝑟 1 ≤ 𝑟 ≤ 𝑚,

the aim is satisfying C and R while minimizing the condition 𝜃
below:

 𝜃 = 𝑎𝑟⊕ 𝑎𝑟
′𝑚

𝑟=1 , where 𝑥 ⊕ 𝑦 =
0 𝑖𝑓 𝑥 = 𝑦
1 𝑖𝑓 𝑥 ≠ 𝑦

 8

Related works
• Incremental CSP algorithms for constraint hierarchy

o EX: DeltaBlue, SkyBlue, cassowary

• Dynamic CSP algorithms
o The number of constraints and/or variables are variable

o Using previous solution or learning to reach next solution

9

Incremental algorithm
• Our incremental algorithm is inspired from SkyBlue

• Using the concept of multi-directional methods

• The data structure includes these parts below:
o S-Variable

o S-Method

o S-Constraint

o S-network

o S-log

• Our algorithm includes two main functions:
o Reconfigure function

o Solve function

10

Reconfigure function

11

Tracing example
• Supposing a DSPL with the FM diagram below.

• Request R: activate Feature B and C

12

A

B C D

E F G

H I J K L

activated feature

deactivated feature

Arbitrary reconfiguration
• An arbitrary valid reconfiguration satisfying R

o changes :5

• Valid reconfigurations with less than 5 changes exists

13

A

B C D

E F G

H I J K L

activated feature

deactivated feature

FM to constraint network
• Corresponding FM to a set of variables and

constraints among them

14

D

A

C B

E

H I

G

L

F

J K

C1 C2 C3

C4 C5

C6 C7 C7

variable

constraint

Mapping FM to a constraint network

Constraint definitions
• C1: 𝐁 ⇒ 𝑨

• C2: 𝐂 ⇒ 𝑨

• C3: 𝑫⟺ 𝑨

• C4: ∼ 𝑩 𝑬

• C5: ((𝐅 ∼ 𝑮 ∧ ∼ 𝑬) ∨ (∼ 𝐅 𝑮 ∧ ∼ 𝑬) ∨ (∼ 𝐅 ∼ 𝑮 ∧𝑬)) ⟺ 𝑪

• C6: 𝐈 ∨ 𝑯 ⟺ 𝑬

• C7: 𝐆⟺ 𝑳

• C8: 𝐅 ⟺ 𝑱

• C9: 𝐅 ⟺ 𝑲

15

Different representation
• Representing constraint network similar to FM

16

D

A

C B

E

H I

G

L

F

J K

c1

c2

c3

c4
c5

c6 c7 c8 c9

Variable assigned to True

Variable assigned to False

Variable needed to be assigned
to True to reach a solution

Variable needed to be assigned
to False to reach a solution

Tracing(1/11)
• Satisfying the request R as the first step

• Distributing the effects at the next steps

17

Variable assigned to True

Variable assigned to False

D

A

C B

E

H I

G

L

F

J K

c1

c2

c3

c4
c5

c6 c7 c8 c9

Variable needed to be assigned
to True to reach a solution

Variable needed to be assigned
to False to reach a solution

Tracing(2/11)
• A is requested to be true by C1 and C2

• A was true beforehand, no more distribution from A

side

18

Variable assigned to True

Variable assigned to False

D

A

C B

E

H I

G

L

F

J K

c1

c2

c3

c4
c5

c6 c7 c8 c9

Variable needed to be assigned
to True to reach a solution

Variable needed to be assigned
to False to reach a solution

Tracing(3/11)
• E is requested to be False by C4

19

Variable assigned to True

Variable assigned to False

D

A

C B

E

H I

G

L

F

J K

c1

c2

c3

c4
c5

c6 c7 c8 c9

Variable needed to be assigned
to True to reach a solution

Variable needed to be assigned
to False to reach a solution

Tracing(4/11)
• C5 needs G or F be True, but not E

• Choosing G arbitrarily at this point

20

Variable assigned to True

Variable assigned to False

D

A

C B

E

H I

G

L

F

J K

c1

c2

c3

c4
c5

c6 c7 c8 c9

Variable needed to be assigned
to True to reach a solution

Variable needed to be assigned
to False to reach a solution

Tracing(5/11)
• C7 needs L be True.

21

Variable assigned to True

Variable assigned to False

D

A

C B

E

H I

G

L

F

J K

c1

c2

c3

c4
c5

c6 c7 c8 c9

Variable needed to be assigned
to True to reach a solution

Variable needed to be assigned
to False to reach a solution

Tracing(6/11)
• No more solution to recheck: one Solution found

• Solution 1: change (B,C,G,L) to true, changes:4

22

Variable assigned to True

Variable assigned to False

D

A

C B

E

H I

G

L

F

J K

c1

c2

c3

c4
c5

c6 c7 c8 c9

Variable needed to be assigned
to True to reach a solution

Variable needed to be assigned
to False to reach a solution

Tracing(7/11)
• Backtrack: to satisfy C5, F can be True as well.

• Choosing F and trying to find a solution

23

Variable assigned to True

Variable assigned to False

D

A

C B

E

H I

G

L

F

J K

c1

c2

c3

c4
c5

c6 c7 c8 c9

Variable needed to be assigned
to True to reach a solution

Variable needed to be assigned
to False to reach a solution

Tracing(8/11)
• C8 needs J be True.

• Having 4 changes up to now in this solution search.

24

Variable assigned to True

Variable assigned to False

D

A

C B

E

H I

G

L

F

J K

c1

c2

c3

c4
c5

c6 c7 c8 c9

Variable needed to be assigned
to True to reach a solution

Variable needed to be assigned
to False to reach a solution

Tracing(9/11)
• Having 4 changes up to now in this solution search.

• Solution1 had 4 changes as well. Pruning this branch

25

Variable assigned to True

Variable assigned to False

D

A

C B

E

H I

G

L

F

J K

c1

c2

c3

c4
c5

c6 c7 c8 c9

Variable needed to be assigned
to True to reach a solution

Variable needed to be assigned
to False to reach a solution

Tracing(10/11)
• The algorithm return an optimum solution, solution1.

• Solution1 is the only optimum solution in this case.

26

Variable assigned to True

Variable assigned to False

D

A

C B

E

H I

G

L

F

J K

c1

c2

c3

c4
c5

c6 c7 c8 c9

Variable needed to be assigned
to True to reach a solution

Variable needed to be assigned
to False to reach a solution

Tracing(11/11)
• After applying solution1 to the system, the FM of the

system would be the diagram below.

27

A

B C D

E F G

H I J K L

activated feature

deactivated feature

Conclusion
• Variability management of DSPLs by FM

• FM corresponds to constraint logic program

• Dynamic reconfiguration in DSPLs as CSP

• Effective reconfiguration by incremental algorithms

28

References(1/2)

• [1] P. Clements and L. Northrop, Software product lines. Addison-
Wesley,2002.

• [2] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, “Feature-oriented domain analysis (foda) feasibility
study,” DTIC Document, Tech. Rep., 1990.

• [3] N. Bencomo, P. Sawyer, G. S. Blair, and P. Grace, “Dynamically
adaptive systems are product lines too: Using model-driven
techniques to capture dynamic variability of adaptive systems.”
in SPLC (2), 2008, pp. 23–32.

• [4] Pau Giner, Joan Fons, Vicente Pelechano, Carlos Cetina,
"Autonomic Computing through Reuse of Variability Models at
Runtime: The Case of Smart Homes", Computer, vol. 42, no. , pp.
37-43, October 2009, doi:10.1109/MC.2009.309

• [5] CETINA, Carlos, et al. Autonomic computing through reuse of
variability models at runtime: The case of smart homes.
Computer, 2009, 42.10.

29

References(2/2)
• [6] D. Benavides, P. Trinidad, and A. Ruiz-Cort´es, “Automated

reasoning on feature models,” in Seminal Contributions to
Information Systems Engineering. Springer, 2013, pp. 361–373.

• [7] A. S. Karataş, H. Oğuztüzün, and A. Doğru, “From extended
feature models to constraint logic programming,” Science of
Computer Programming, vol. 78, no. 12, pp. 2295–2312, 2013.

• [8] B. N. Freeman-Benson, J. Maloney, and A. Borning, “An
incremental constraint solver,” Communications of the ACM,
vol. 33, no. 1, pp. 54– 63, 1990.

• [9] M. Sannella, “Skyblue: a multi-way local propagation
constraint solver for user interface construction,” in
Proceedings of the 7th annual ACM symposium on User
interface software and technology. ACM, 1994, pp. 137–146.

• [10] G. J. Badros, A. Borning, and P. J. Stuckey, “The cassowary
linear arithmetic constraint solving algorithm,” ACM
Transactions on Computer- Human Interaction (TOCHI), vol. 8,
no. 4, pp. 267–306, 2001.

30

31

