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Introduction(1/4)

« Software Product Line (SPL)

o A series of similar systems

o Sharing common cores with some
differences

o Variability management before runtime
o Ex:smartphones

« Dynamic SPL (DSPL)

o Variability management at runtime
o Ex:Smart homes
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Introduction(2/4)

« Variability Management
o Ex: Feature model (FM) diagram
o SPL: Some of the features in a product
o DSPL:
« All of the features in a DSPL product
* Runtime reconfigurations regarding context condition

U%unal MaI'II:Iatc|;

b _ Security | Multimedia ‘ ‘ Automated illumination ‘

--------

Multiple- (ﬁ MO (L
choice choice
[n-home Alam'l Lighting
security

Infrared
160-degree detector

by occupancy
| \

Silent
alarm

Feature model diagram of a smart home[3] 7



Introduction(3/4)

« Constraint Logic Program

o Containing constraints in the body of clauses
o EX:A(X, y):-x>0,y>1, B(x)

 FM relations can be expressed as clauses of logical
expressions

o Ex:
“Aexcludes B" as “—(AAB)“
“Arequires B" as “A = B"
“Ais the parent of B, in a mandatory relation” as “A < B"
“A is the parent of B, in an optional relation” as “B = A"
« “Aisthe parent of Band C, in an ‘OR’ relation” as “Bv € = A"
“Ais the parent of B and C, in an alternative relation” as
“((BA~C)V(~BAC(C)) & A"
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Introduction(4/4)

Runtime DSPL reconfiguration

Context Monitor

Condition 1 Resolution 1
Condition 2 Resolution 2
Condition N Resolution N

The context monitor specifies activation and/or deactivation of some
of the features in specific conditions[4]

Effective reconfiguration criteria:

o Imposing the minimum number of changes to the current product
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Problem Definition(1/2)

« The whole FM as a constraint network

o Everyrelation as a constraint
o Reaching o valid DSPL product by satisfying all of the constraints

« DSPL reconfiguration problem as Constraint
Satisfaction Problem(CSP)

o
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Problem Definition(2/2)

Having a constraint network including a set of variables V:
V ={vy,v,,.., v} wherevieD; for 1 <i <n,
and a set of satisfied constraints C among variables in V:
C={cy,Co r, Cx},
and a resolution R:
S / ! !
R= {vj1 —ap,V, < Az ..., Vj, am}’
where the variables have the previous values:
vj =a, for1<r<m,

the aim is satisfying C and R while minimizing the condition 6
below:

0 ifx=
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Related works

Incremental CSP algorithms for constraint hierarchy
o EX: DeltaBlue, SkyBlue, cassowary

Dynamic CSP algorithms

o The number of constraints and/or variables are variable
o Using previous solution or learning to reach next solution
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Incremental algorithm

« QOur incremental algorithm is inspired from SkyBlue
* Using the concept of multi-directional methods
« The data structure includes these parts below:

O

O O O O

S-Variable
S-Method
S-Constraint
S-network
S-log

« Qur algorithm includes two main functions:

O

O

Reconfigure function
Solve function
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Reconfigure function

Algorithm 1 Reconfigure Function

Input:

a reconfiguration request and a consistent constraint network

Output:

l:
2
3
4
5
£
T
g

9:
1
I1:
12:

19:

a list including variable changes which results in satisfying the request and a consistent constraint network or an empty
list
function RECONFIGURE(V, Sysfem) = V- a list of variables, Sysfem - constraint network
Vo + System.getVariables( getNames(17))
newlyChangedVars +— System.setVariables(17)

logl.assignedVariables «— V
logl.changedVariables «— newlyChangedVars

related 'S +— System.relatedConstraints{newlyC hangedlV ars)
new' S+ sensitiveConstraints(related TS, newlyChangedVars)

if new'S is empty then
System setVariables( 1)
return newlyChongedV ars

else
resull +— SOLVE(newCS, logl, System, {})
System .setVariables(15)
return resuli

end if

end function
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Tracing example

« Supposing a DSPL with the FM diagram below.
 Request R: activate Feature B and C
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Arbitrary reconfiguration

« An arbifrary valid reconfiguration satisfying R

o changes :5

« Valid reconfigurations with less than 5 changes exists

B -ctivated feature
|:| deactivated feature
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FM to constraint network

« Corresponding FM 1o a set of variables and

constraints among them

O variable

[] constraint

C3

C2

C1

Mapping FM to a consiraint network
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Constraint definitions

- C1:B=>14

« C2:.C>4

c C3D=A

- C4. ~ (BAE)
« C5:((FA~GA~E)V(~FAGA~E)V(~ FA~GAE)) < C
« C6:(IVH) = E
« C7:.Go L

« C8 F<]J

« C9FoK

o @15



Different representation

« Representing constraint network similar to FM

‘ Variable assigned to True
O Variable assigned to False

' Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution
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Tracing(1/11)

« Satisfying the request R as the first step
« Distributing the effects at the next steps

‘ Variable assigned to True
O Variable assigned to False

’ Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution
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Tracing(2/11)

 Alisrequested to be frue by C1 and C2
A was true beforehand, no more distribution from A

side

‘ Variable assigned to True
O Variable assigned to False

’ Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution
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Tracing(3/11)

» Eisrequested to be False by C4

‘ Variable assigned to True
O Variable assigned to False

’ Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution
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Tracing(4/11)

« CSneeds GorFbeTrue, but notE
« Choosing G arbitrarily at this point

‘ Variable assigned to True
O Variable assigned to False

’ Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution
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Tracing(5/11)

C7 needs L be True.

‘ Variable assigned to True
O Variable assigned to False

’ Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution
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Tracing(6/11)

« No more solution to recheck: one Solution found
« Solution 1: change (B,C,G,L) to true, changes:4

‘ Variable assigned to True
O Variable assigned to False

’ Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution
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Tracing(7/11)

« Backtrack: to satisty C5, F can be True as well.
« Choosing F and trying to find a solution

‘ Variable assigned to True
O Variable assigned to False

’ Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution
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Tracing(8/11)

« C8 needs J be True.
* Having 4 changes up to now in this solution search.

‘ Variable assigned to True
O Variable assigned to False

’ Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution
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Tracing(9/11)

* Having 4 changes up to now in this solution search.
« Solution1l had 4 changes as well. Pruning this branch

‘ Variable assigned to True
O Variable assigned to False

’ Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution

o @25



Tracing(10/11)

» The algorithm return an optimum solution, solutionl.
« Solutionl is the only optimum solution in this case.

‘ Variable assigned to True
O Variable assigned to False

’ Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution

° 026



Tracing(11/11)

« After applying solution1 to the system, the FM of the
system would be the diagram below.

B -ctivated feature
|:| deactivated feature
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Conclusion

« Variability management of DSPLs by FM

 FM corresponds to constraint logic program

* Dynamic reconfiguration in DSPLs as CSP

« Effective reconfiguration by incremental algorithms

° ®28
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