An Incremental Constraint
Satisfaction Algorithm
for Dynamic Reconfiguration

Sina Entekhabi
Ahmet Serkan Karatas
Halit Oguztuzun
ODTU, Ankaro
IZTECH Dependability, 8 May 2017

® Supported by TUBITAK-ARDEB-1001 program under project 215E188. o]

Outline

nfroduction

Problem definition
Related works
ncremental algorithm
Tracing example
Conclusion
References

Introduction(1/4)

« Software Product Line (SPL)

o A series of similar systems

o Sharing common cores with some
differences

o Variability management before runtime
o Ex:smartphones

« Dynamic SPL (DSPL)

o Variability management at runtime
o Ex:Smart homes

BOUAL

o3

Introduction(2/4)

« Variability Management
o Ex: Feature model (FM) diagram
o SPL: Some of the features in a product
o DSPL:
« All of the features in a DSPL product
* Runtime reconfigurations regarding context condition

U%unal MaI'II:Iatc|;

b _ Security | Multimedia ‘ ‘ Automated illumination ‘

Multiple- (ﬁ MO (L
choice choice
[n-home Alam'l Lighting
security

Infrared
160-degree detector

by occupancy
| \

Silent
alarm

Feature model diagram of a smart home[3] 7

Introduction(3/4)

« Constraint Logic Program

o Containing constraints in the body of clauses
o EX:A(X, y):-x>0,y>1, B(x)

 FM relations can be expressed as clauses of logical
expressions

o Ex:
“Aexcludes B" as “—(AAB)“
“Arequires B" as “A = B"
“Ais the parent of B, in a mandatory relation” as “A < B"
“A is the parent of B, in an optional relation” as “B = A"
« “Aisthe parent of Band C, in an ‘OR’ relation” as “Bv € = A"
“Ais the parent of B and C, in an alternative relation” as
“((BA~C)V(~BAC(C)) & A"

5

Introduction(4/4)

Runtime DSPL reconfiguration

Context Monitor

Condition 1 Resolution 1
Condition 2 Resolution 2
Condition N Resolution N

The context monitor specifies activation and/or deactivation of some
of the features in specific conditions[4]

Effective reconfiguration criteria:

o Imposing the minimum number of changes to the current product

056

Problem Definition(1/2)

« The whole FM as a constraint network

o Everyrelation as a constraint
o Reaching o valid DSPL product by satisfying all of the constraints

« DSPL reconfiguration problem as Constraint
Satisfaction Problem(CSP)

o

o/

Problem Definition(2/2)

Having a constraint network including a set of variables V:
V ={vy,v,,.., v} wherevieD; for 1 <i <n,
and a set of satisfied constraints C among variables in V:
C={cy,Co r, Cx},
and a resolution R:
S / ! !
R= {vj1 —ap,V, < Az ..., Vj, am}’
where the variables have the previous values:
vj =a, for1<r<m,

the aim is satisfying C and R while minimizing the condition 6
below:

0 ifx=
=" a b a;,wherex@)’:{l i;x:/_-i}

Related works

Incremental CSP algorithms for constraint hierarchy
o EX: DeltaBlue, SkyBlue, cassowary

Dynamic CSP algorithms

o The number of constraints and/or variables are variable
o Using previous solution or learning to reach next solution

o9

Incremental algorithm

« QOur incremental algorithm is inspired from SkyBlue
* Using the concept of multi-directional methods
« The data structure includes these parts below:

O

O O O O

S-Variable
S-Method
S-Constraint
S-network
S-log

« Qur algorithm includes two main functions:

O

O

Reconfigure function
Solve function

10

Reconfigure function

Algorithm 1 Reconfigure Function

Input:

a reconfiguration request and a consistent constraint network

Output:

l:
2
3
4
5
£
T
g

9:
1
I1:
12:

19:

a list including variable changes which results in satisfying the request and a consistent constraint network or an empty
list
function RECONFIGURE(V, Sysfem) = V- a list of variables, Sysfem - constraint network
Vo + System.getVariables(getNames(17))
newlyChangedVars +— System.setVariables(17)

logl.assignedVariables «— V
logl.changedVariables «— newlyChangedVars

related 'S +— System.relatedConstraints{newlyC hangedlV ars)
new' S+ sensitiveConstraints(related TS, newlyChangedVars)

if new'S is empty then
System setVariables(1)
return newlyChongedV ars

else
resull +— SOLVE(newCS, logl, System, {})
System .setVariables(15)
return resuli

end if

end function

1]

Tracing example

« Supposing a DSPL with the FM diagram below.
 Request R: activate Feature B and C

N
oo

Y - activated feature

i |:| deactivated feature
G E
L I H

Y 12

Arbitrary reconfiguration

« An arbifrary valid reconfiguration satisfying R

o changes :5

« Valid reconfigurations with less than 5 changes exists

B -ctivated feature
|:| deactivated feature

° 13

FM to constraint network

« Corresponding FM 1o a set of variables and

constraints among them

O variable

[] constraint

C3

C2

C1

Mapping FM to a consiraint network

®4

Constraint definitions

- C1:B=>14

« C2:.C>4

c C3D=A

- C4. ~ (BAE)
« C5:((FA~GA~E)V(~FAGA~E)V(~ FA~GAE)) < C
« C6:(IVH) = E
« C7:.Go L

« C8 F<]J

« C9FoK

o @15

Different representation

« Representing constraint network similar to FM

‘ Variable assigned to True
O Variable assigned to False

' Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution

° ®14

Tracing(1/11)

« Satisfying the request R as the first step
« Distributing the effects at the next steps

‘ Variable assigned to True
O Variable assigned to False

’ Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution

e/

Tracing(2/11)

 Alisrequested to be frue by C1 and C2
A was true beforehand, no more distribution from A

side

‘ Variable assigned to True
O Variable assigned to False

’ Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution

18

Tracing(3/11)

» Eisrequested to be False by C4

‘ Variable assigned to True
O Variable assigned to False

’ Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution

o 19

Tracing(4/11)

« CSneeds GorFbeTrue, but notE
« Choosing G arbitrarily at this point

‘ Variable assigned to True
O Variable assigned to False

’ Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution

° e20

Tracing(5/11)

C7 needs L be True.

‘ Variable assigned to True
O Variable assigned to False

’ Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution

02]

Tracing(6/11)

« No more solution to recheck: one Solution found
« Solution 1: change (B,C,G,L) to true, changes:4

‘ Variable assigned to True
O Variable assigned to False

’ Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution

o e 22

Tracing(7/11)

« Backtrack: to satisty C5, F can be True as well.
« Choosing F and trying to find a solution

‘ Variable assigned to True
O Variable assigned to False

’ Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution

° ®23

Tracing(8/11)

« C8 needs J be True.
* Having 4 changes up to now in this solution search.

‘ Variable assigned to True
O Variable assigned to False

’ Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution

® 024

Tracing(9/11)

* Having 4 changes up to now in this solution search.
« Solution1l had 4 changes as well. Pruning this branch

‘ Variable assigned to True
O Variable assigned to False

’ Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution

o @25

Tracing(10/11)

» The algorithm return an optimum solution, solutionl.
« Solutionl is the only optimum solution in this case.

‘ Variable assigned to True
O Variable assigned to False

’ Variable needed to be assigned
to True to reach a solution

O Variable needed to be assigned
to False to reach a solution

° 026

Tracing(11/11)

« After applying solution1 to the system, the FM of the
system would be the diagram below.

B -ctivated feature
|:| deactivated feature

o e/

Conclusion

« Variability management of DSPLs by FM

 FM corresponds to constraint logic program

* Dynamic reconfiguration in DSPLs as CSP

« Effective reconfiguration by incremental algorithms

° ®28

References(1/2)

« [1] P. Clements and L. Northrop, Software product lines. Addison-
Wesley,2002.

 [2] K. C.Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, “Feature-oriented domain analysis (foda) feasibility
study,” DTIC Document, Tech. Rep., 1990.

 [3] N. Bencomo, P. Sawyer, G. S. Blair, and P. Grace, “Dynamically
adaptive systems are product lines too: Using model-driven
fechnigques to capture dynamic variability of adaptive systems.”
in SPLC (2), 2008, pp. 23-32.

* [4] Pau Giner, Joan Fons, Vicente Pelechano, Carlos Ceting,
"Autonomic Computing through Reuse of Variability Models aft
Runfime: The Case omeor’r Homes', Computer, vol. 42, no. , pp.
37-43, October 2009, doi:10.]1 109/MC 2009.309

« [5] CETINA, Carlos, et al. Autonomic computing through reuse of
variability models at runtime: The case of smart homes.
Computer, 2009, 42.10.

° ®29

References(2/2)

[6] D. Benavides, P. Trinidad, and A. Ruiz-Cort’es, “Automated
reasoning on feature models,” in Seminal Contributions to
Information Systems Engineering. Springer, 2013, pp. 361-373.

[7] A.S. Karatas, H. OguztUzin, and A. Dogru, "From extended
feature models to constraint logic programming,” Science of
Computer Programming, vol. 78, no. 12, pp. 2295-2312, 2013.

[8] B. N. Freeman-Benson, J. Maloney, and A. Borning, “An
Incremental constraint solver,” Communications of the ACM,
vol. 33, no. 1, pp. 54— 63, 1990.

[?] M. Sannella, “Skyblue: a multi-way local propagation
constraint solver for user interface construction,” in
Proceedings of the 7th annual ACM symposium on User
interface software and technology. ACM, 1994, pp. 137-146.

[10] G. J. Badros, A. Borning, and P. J. Stuckey, “The cassowary
inear arithmetic constraint solving algorithm,” ACM
Transactions on Computer- Human Interaction (TOCHI), vol. 8,
no. 4, pp. 267-306, 2001.

® 30

03]

