AN ARCHITECTURE FOR TEST
CASE PRIORITIZATION BASED ON
CHANGE AND EFFECT (RAPHS
USING BAYESIAN NETWORKS

Authors: Ekincan Ufuktepe and Tugkan Tuglular

‘ Presented by: Ekincan Ufuktepe
‘ 3rd Workshop on Dependability at IZTECH
® 8 May 2017

OUTLINE

1. Introduction

Test Case Prioritization
Bayesian Network

Our Previous Architecture

ook N

Architecture

1. Change Effect Graph

2. Change percentage of a code

3. Probability of change potential

6. Conclusion

INTRODUCTION

Regression:
"when you fix one bug, you
infroduce several newer bugs."

INTRODUCTION

o When a software 1s modified, to reduce the risks,
we use Regression Testing.

o What do we do?

e Re-run the test cases after modification.

o Re-run all test cases?

RUNIAUIYTH BESIIS

INTRODUCTION

o What could go worse?

e Running the entire test suite for an industrial project
has reported that the execution has taken seven
weeks. (Report year: 2000)1-2

e Google runs ~100.000.000 test cases per day.>

e Google performs more than 20 code changes per
minute and 50% of the code changes every
month. 3

1Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Prioritizing test cases for regression
testing. Software Engineering Notes, 25(5):102—112, 2000.

2Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Test case prioritization: A family of
empirical studies. IEEE Transactions on Software Engineering, 28(2):159-182, 2002.

3Ashish Kumar. Development at the speed and scale of google. International Software Development
Conference, 2010, Presentation slides are available at: qconsf.com/sf2010/

TEST CASE PRIORITIZATION

Relative Interest in Different Subjects

30
Leung et al.
24 on cost model
Rothermel et al.
on prioritisation
8 Harrold et al.
Fischer et al. [47] on minimisation
12 on selection

=] (23]
1994 11
1997 T 1

hmmﬂ-—mﬂ-ﬁ-mmammﬂv—mﬂ @ m @ 0O — o o= W o
o o O G ;o o O v o o M o o)) =)
- = T T T T T v T T T T o = o T — — v~ O O O o O o D O o

B Minimisation [] Selection [Jl] Prioritisation [[] EmpiricalComparative

4S. Yoo and M. Harman, “Regression testing minimization, selection and prioritization: a survey,”
Software Testing, Verification and Reliability, vol. 24, no. 8, pp. n/a—n/a, 2010

TEST CASE PRIORITIZATION

o To reduce the cost of Regression Testing there
are three techniques that could be categorized:

e Regression Test case Selection (RTYS).
e Regression Test case Minimization (RTM).

e Regression Test case Prioritization (RTP).

TEST CASE PRIORITIZATION

o Regression Test case Selection focuses on
covering the changed code between versions of
software under test.

o Regression Test case Minimization aims to
1dentify redundant test cases and to remove them
from the test suite 1n order to reduce the size of
the test suite.

o Regression Test case Prioritization focuses on
1dentifying the ideal ordering of test cases.
e Enhances the rate of fault detection.
e Provide the maximum coverage sooner.

e Formally; its objective is to find the best permutation
of the test suite.

TEST CASE PRIORITIZATION

o There are two well known and basic
prioritization techniques;

e Total Technique (TT) — Iterative approach
o Additional Technique (AT) — Greedy approach
o Both select one test case on 1teration.

o TT: Prioritize test cases through maximizing the
total number of entities.

o AT: Selects the test case that covers the highest
number of entities that have not been covered
yet.

BAYESIAN NETWORK

o A Bayesian network 1s a graphical model that
encodes probabilistic relationships among
variables of interest. When used in conjunction
with statistical techniques, the graphical model
has several advantages for data analysis®.

5D. Heckerman. A Tutorial on Learning With Bayesian Networks, Technical Report, Microsoft Research, no. MSR- Q
TR-96-06, 1996, http://research.microsoft.com/apps/pubs/?1d=69588

http://research.microsoft.com/apps/pubs/?id=69588

BAYESIAN NETWORK

SPRINKLER RAIN

me‘ T F ‘ T F
SPRINKLER »
F |04 o6 0.2 08
T | 0.01 0.99

GRASS WET
SPRINKLER BRAIN| T F
F F 0.0 1.0
F T 0.8 0.2
T F 0.9 0.1
T T 0.99 0.01

6 http://fen.wikipedia.org/wiki/Bayesian_network

OUR PREVIOUS ARCHITECTURE

o There are 3 types of node in the Bayesian
Network structure:

e (Class Nodes
e Fault-proneness Nodes
e Test Case Nodes

OUR PREVIOUS ARCHITECTURE

7S. Mirarab and L. Tahvildari, Fundamental Approaches to Software Engineering, vol. 4422 of °
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007

OUR PREVIOUS ARCHITECTURE

(j) /_ \\ Our Tool
ckjm .
Bayesian Network based N
Test Case Prioritization External Tool/Library
Preprocessor
Coupling Calculate P
Between - CBO
Objects (CBO)
Information Probabilities
- @@
—
ObjectAid UML
Calculate Class| Calculate
Class
Fan-Out
Informati Fan-Out
nrormation Probabilities O
Execute Selected
-
Set Frevioua & Collect Source Construct Create Cteulata Test Cases with
Current e Test Case
Verslon of |nfn?r$lon] B;;yt:nﬂ?: Network File, /' Prioritization abawe :ﬂllt:;:;d
—
Source Code red Probabilities A
Calculate
?f:,::f,';? »/ Code Change
Percentage
-
——
EclEmma & Junit
Calculate
Irﬁ'::;latlon §y Coverage
Probability
- J \ j
New version of Source Code

8 Ufuktepe, E. and Tuglular, T., 2016, June. Automation Architecture for Bayesian Network Based

Test Case Prioritization and Execution. In Computer Software and Applications Conference
(COMPSAC), 2016 IEEE 40th Annual (Vol. 2, pp. 52-57). IEEE.

ARCHITECTURE

o The proposed architecture utilizes three types of
Information
e (Call graph (Dependency)
e Change percentage of a code (between two versions)
e Potential of change probability (Dataflow analysis)

o These information will be used in a probabilistic
model: Bayesian Network

CHANGE EFFECT GRAPH

o Call graph 1s a graphical model, which
represents calling relationships between
subroutines of a program.

o Call graph 1s used to construct the layout of
software.

o It also shows dependecies of each method.

CHANGE EFFECT GRAPH

o Call graph 1s only used to extract the nodes and
edges.

o The edge directions are reformed depending on
the change relationship between caller and
callee.

o Since call graph edge directions could be
changed, instead of mentioning graph as a call
oraph we call it change effect graph.

CHANGE EFFECT GRAPH

o Let’s assume that
e (Caller 1s Node #1
e (Callee 1s Node #2

Caller Callee

Unchanged Unchanged Node#1 - Node#2
Unchanged Changed - Node#1 € Node#2
Changed Unchanged - Node#1 - Node#2
Changed Changed Caller Change > Callee Change Node#1 2> Node#2
Changed Changed Caller Change = Callee Change Node#1 2> Node#2

Changed Changed Caller Change < Callee Change Node#1 €< Node#2

CHANGE EFFECT GRAPH

. . Method #1 Unchanged -
Origrmal Call. Eepl Method #2 Unchanged

Method # 1 }—(Method #2 }—(Method #3) (Method #1 Method #2 }—(Method #3

CHANGE EFFECT GRAPH

. . Method #1 Unchanged -
Original Call Graph Method #2 Changed

¢¢¢¢¢
- -

~ -

Method #1 Method #2 j—=(Method #3} N fiffiod #2 —(Method #3 Method #1

CHANGE EFFECT GRAPH

. . Method #1 Changed -
Origrmal Call. Eepl Method #2 Unchanged

Method #1 Method #2 Method #3 §:Method # 1 ---» Method #2 Method #3

CHANGE EFFECT GRAPH

. . Method #1 Changed >
Original Call Graph Method #2 Changed

Method # 1 }—+(Method #2}—(Method #3) iMethod #1 +---» Method #2 —(Method #3

CHANGE EFFECT GRAPH

. . Method #1 Changed =
Original Call Graph Method #2 Changed

Method #1 }—+Method #2}—(Method #3) i Method #1 — Method #2 —Method #3

CHANGE EFFECT GRAPH

. . Method #1 Changed <
Original Call Graph Method #2 Changed

—————
- - -

~ -

Method #1 Method #2 Method #3 Q:Mé't'h' od & 5‘3 Method #3 {Mét'l{ od #1

CHANGE PERCENTAGE OF A CODE

o To calculate the change percentage of a code we
need 2 (Current & Previous) versions of a code.

o For more precise calculation of change
percentage, rather than analyzing the source
codes, bytecodes (Java) of two versions are
compared.

e Avoid difference in coding styles.

CHANGE PERCENTAGE OF A CODE

o The change percentage 1s simply calculated by
changed lines of bytecode.

o Change percentages are calculate by method
level.

Total Changed Lines of bytecode

Change Percentage =
S S Total Lines of bytecode

PROBABILITY OF CHANGE POTENTIAL

o A change 1n a method can effect both it’s caller
and callee.

e A changed caller method can effect it’s callee by
passing an input to its parameter.

e A changed callee method can effect it’s caller by it’s
returned value.

o Therefore, dataflow analysis 1s performed.

PROBABILITY OF CHANGE POTENTIAL

1. // Godbach Conjuncture Test

2. puklic veid geoldkach (int a, int b)

3.

4. System.cut.println("First input: "+a);

3. System.cut.println("Second input: "+b);

6. int c;

7. c = sum(a, b);

8. if((isPrime (a) && isPrime(b)) && (a>0 a& b>0))

g. {

10. System.cut.println("Your both dinputs are prime, let's test Goldbach's
Conjuncture") ;

11. if (e%2 = 0)

12. System.cut.println("Goldbach's Conjuncture Satisfied");

13. else

14. System.cut.println("Gecldbach's Conjuncture Failed");

15. }

le. else

17. System.cut.println("At least one cof your input is net a prime or greater
than 0");

18. }

14.

20. // Summaticn methed
21l. public int sum(int a, int b}

22. |

23. int sum;

24, sum = a + b;
25. return sum;
-

26. }

28. // Primality check methocd
29. public keolean isPrime(int num)

30. {

31. // Gecldkach assumes that 1 is prime
2. if (num==1)

33. return true;

34, else

35. {

3e. for(int i=2;i<=Math.sgrt(num);i++)
37. {

38. if (num%i==0)

35, return false;

40, }

41, return true;

4z, }

PROBABILITY OF CHANGE POTENTIAL

o Caller = Callee

e (Caller has an influence on Callee.

LOC where Callee Method's parameter
first used line to end of its scope

Total Lines of Code of Callee Method

e Caller's effect on Callee =

PROBABILITY OF CHANGE POTENTIAL

1. // Godbach Conjuncture Test

2. public woid goldbach(int a, int b)

3. i

4. System.out.println ("First input: "+a):;

5. System.out.println ("Second input: "+b):

6. int c:

s——=—aumiar—k+

7. if({(isPrime (a) && isPrime(b)) && (a>0 && b>0))

a. {

9. Syatem.out.printin("Your both inputsz are prime, let's test Goldbach's
Conjuncture™);

11. if(c2z == 0]

12. System.out.printin("Goldbach's Conjuncture Satisfied™);

13. elze

14. System.out.println("Goldbach'"s Conjuncture Failed"):

15. b

16. else

17. System.out.println("At least one of your input iz not a prime or greater
than 0"):

18. }

19.

20. // Summation method
21. public int sum({int a, int b)

22. {

23. int sum;

24, 2um = a + b;
25. return sum;
2. }

27.

Z8. // Primality check method
2%, public boolean isPrime (int num)

30. {

31. // Goldbach assumes that 1 is prime
3z. if (num==1)

33. return true:;

4. else

EAT- {

36. for (int i=2;i<=Math.sgrt (num) ;i++)
s {

38. if (num%i==0)

B return false:

40. }

41. return true:;

42. }

43. }

PROBABILITY OF CHANGE POTENTIAL

o Caller € Callee

e (Callee has an influence on Caller

LOC from the line where Caller Method has
first called Callee to end of its scope

Total Lines of Code of Caller Method

e Callee's effect on Caller =

PROBABILITY OF CHANGE POTENTIAL

1. // Godbach Conjuncture Test

2. public wvoid goldbach({int a, int b)

3. |

4. System.out.println ("First input: "+a):;

5. System.out.println ("Second input: "4b):

a. int c:

7. c = sumia, b):

g. if((isPrime(a) && izPrime(b)) && (a>0 && b>0))

a. {

10. System.out.println{"Your both inputs are prime, let's test Goldbach's
Conjuncture™) ;

11. if(c%2 == 0)

12. System.out.println("Goldbach's Conjuncture Satisfied™):

a3 - else

14, System.out.println("Goldbach's Conjuncture Failed™}:

15. i

16. else

a7 - System.out.println("At least one of your input is not a prime or greater
than 0");

i8. }

19.

20. // Summation method
21, public int sum(int a, int b)

22, {

23. int sum;

24, sum = a + b:
25, return sum;
26. }

27.

28. // Primality check method
29, public boolean izPrime(int num)

30. {

31. /{ Goldbach a=ssumes that 1 i=s prime

3z. if (num==1)

33. return true;

34. else

1 {

£ i=2do=hath =q:t—|’_—_|-rj|'\ =g 3

|36. for(imt i=2iicnum/2;i++)

37. {

as. if (num%i==0)

39, return false;

40. i3

41. return true;

42, ¥

43. }

ARCHITECTURE

-

f Dependency

Get Previous Collect Calculate

& Current <
Version of Cotk Code Change

Test Case
Prioritization Based on
Change and Effect Graphs
Usina Bavesian Networks

.~ OurTool
... External TooliLibrary

N

. Modified ToollLibrary

New version of Source Code

CONCLUSION

o By combining the information below;
e Change information

e Dependency

o A probabilistic model Bayesian Network has been
used to prioritize test cases.

o As a result, Rate of fault detection 1s expected
to be 1increased.

THANK YOU

