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INTRODUCTION

Regression:
"when you fix one bug, you
infroduce several newer bugs."




INTRODUCTION

o When a software 1s modified, to reduce the risks,
we use Regression Testing.

o What do we do?

e Re-run the test cases after modification.

o Re-run all test cases?
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INTRODUCTION

o What could go worse?

e Running the entire test suite for an industrial project
has reported that the execution has taken seven
weeks. (Report year: 2000)1-2

e Google runs ~100.000.000 test cases per day.>

e Google performs more than 20 code changes per
minute and 50% of the code changes every
month. 3

1Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Prioritizing test cases for regression
testing. Software Engineering Notes, 25(5):102—112, 2000.

2Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Test case prioritization: A family of
empirical studies. IEEE Transactions on Software Engineering, 28(2):159-182, 2002.

3Ashish Kumar. Development at the speed and scale of google. International Software Development
Conference, 2010, Presentation slides are available at: qconsf.com/sf2010/




TEST CASE PRIORITIZATION
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4S. Yoo and M. Harman, “Regression testing minimization, selection and prioritization: a survey,”
Software Testing, Verification and Reliability, vol. 24, no. 8, pp. n/a—n/a, 2010




TEST CASE PRIORITIZATION

o To reduce the cost of Regression Testing there
are three techniques that could be categorized:

e Regression Test case Selection (RTYS).
e Regression Test case Minimization (RTM).

e Regression Test case Prioritization (RTP).




TEST CASE PRIORITIZATION

o Regression Test case Selection focuses on
covering the changed code between versions of
software under test.

o Regression Test case Minimization aims to
1dentify redundant test cases and to remove them
from the test suite 1n order to reduce the size of
the test suite.

o Regression Test case Prioritization focuses on
1dentifying the ideal ordering of test cases.
e Enhances the rate of fault detection.
e Provide the maximum coverage sooner.

e Formally; its objective is to find the best permutation
of the test suite.




TEST CASE PRIORITIZATION

o There are two well known and basic
prioritization techniques;

e Total Technique (TT) — Iterative approach
o Additional Technique (AT) — Greedy approach
o Both select one test case on 1teration.

o TT: Prioritize test cases through maximizing the
total number of entities.

o AT: Selects the test case that covers the highest
number of entities that have not been covered
yet.




BAYESIAN NETWORK

o A Bayesian network 1s a graphical model that
encodes probabilistic relationships among
variables of interest. When used in conjunction
with statistical techniques, the graphical model
has several advantages for data analysis®.

5D. Heckerman. A Tutorial on Learning With Bayesian Networks, Technical Report, Microsoft Research, no. MSR- Q
TR-96-06, 1996, http://research.microsoft.com/apps/pubs/?1d=69588



http://research.microsoft.com/apps/pubs/?id=69588

BAYESIAN NETWORK
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6 http://fen.wikipedia.org/wiki/Bayesian_network




OUR PREVIOUS ARCHITECTURE

o There are 3 types of node in the Bayesian
Network structure:

e (Class Nodes
e Fault-proneness Nodes
e Test Case Nodes




OUR PREVIOUS ARCHITECTURE

7S. Mirarab and L. Tahvildari, Fundamental Approaches to Software Engineering, vol. 4422 of °
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007




OUR PREVIOUS ARCHITECTURE
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8 Ufuktepe, E. and Tuglular, T., 2016, June. Automation Architecture for Bayesian Network Based
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(COMPSAC), 2016 IEEE 40th Annual (Vol. 2, pp. 52-57). IEEE.




ARCHITECTURE

o The proposed architecture utilizes three types of
Information
e (Call graph (Dependency)
e Change percentage of a code (between two versions)
e Potential of change probability (Dataflow analysis)

o These information will be used in a probabilistic
model: Bayesian Network




CHANGE EFFECT GRAPH

o Call graph 1s a graphical model, which
represents calling relationships between
subroutines of a program.

o Call graph 1s used to construct the layout of
software.

o It also shows dependecies of each method.




CHANGE EFFECT GRAPH

o Call graph 1s only used to extract the nodes and
edges.

o The edge directions are reformed depending on
the change relationship between caller and
callee.

o Since call graph edge directions could be
changed, instead of mentioning graph as a call
oraph we call it change effect graph.




CHANGE EFFECT GRAPH

o Let’s assume that
e (Caller 1s Node #1
e (Callee 1s Node #2

Caller Callee

Unchanged Unchanged Node#1 - Node#2
Unchanged Changed - Node#1 € Node#2
Changed Unchanged - Node#1 - Node#2
Changed Changed Caller Change > Callee Change Node#1 2> Node#2
Changed Changed Caller Change = Callee Change Node#1 2> Node#2

Changed Changed Caller Change < Callee Change Node#1 €< Node#2




CHANGE EFFECT GRAPH
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CHANGE EFFECT GRAPH
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CHANGE EFFECT GRAPH
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CHANGE EFFECT GRAPH
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CHANGE EFFECT GRAPH
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CHANGE EFFECT GRAPH
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CHANGE PERCENTAGE OF A CODE

o To calculate the change percentage of a code we
need 2 (Current & Previous) versions of a code.

o For more precise calculation of change
percentage, rather than analyzing the source
codes, bytecodes (Java) of two versions are
compared.

e Avoid difference in coding styles.




CHANGE PERCENTAGE OF A CODE

o The change percentage 1s simply calculated by
changed lines of bytecode.

o Change percentages are calculate by method
level.

Total Changed Lines of bytecode

Change Percentage =
S S Total Lines of bytecode




PROBABILITY OF CHANGE POTENTIAL

o A change 1n a method can effect both it’s caller
and callee.

e A changed caller method can effect it’s callee by
passing an input to its parameter.

e A changed callee method can effect it’s caller by it’s
returned value.

o Therefore, dataflow analysis 1s performed.




PROBABILITY OF CHANGE POTENTIAL

1. // Godbach Conjuncture Test

2. puklic veid geoldkach (int a, int b)

3.

4. System.cut.println("First input: "+a);

3. System.cut.println("Second input: "+b);

6. int c;

7. c = sum(a, b);

8. if((isPrime (a) && isPrime(b)) && (a>0 a& b>0))

g. {

10. System.cut.println("Your both dinputs are prime, let's test Goldbach's
Conjuncture") ;

11. if (e%2 = 0)

12. System.cut.println("Goldbach's Conjuncture Satisfied");

13. else

14. System.cut.println("Gecldbach's Conjuncture Failed");

15. }

le. else

17. System.cut.println("At least one cof your input is net a prime or greater
than 0");

18. }

14.

20. // Summaticn methed
21l. public int sum(int a, int b}

22. |

23. int sum;

24, sum = a + b;
25. return sum;
-

26. }

28. // Primality check methocd
29. public keolean isPrime(int num)

30. {

31. // Gecldkach assumes that 1 is prime
2. if (num==1)

33. return true;

34, else

35. {

3e. for(int i=2;i<=Math.sgrt(num);i++)
37. {

38. if (num%i==0)

35, return false;

40, }

41, return true;

4z, }




PROBABILITY OF CHANGE POTENTIAL

o Caller = Callee

e (Caller has an influence on Callee.

LOC where Callee Method's parameter
first used line to end of its scope

Total Lines of Code of Callee Method

e Caller's effect on Callee =




PROBABILITY OF CHANGE POTENTIAL

1. // Godbach Conjuncture Test

2. public woid goldbach(int a, int b)

3. i

4. System.out.println ("First input: "+a):;

5. System.out.println ("Second input: "+b):

6. int c:

s——=—aumiar—k+

7. if({(isPrime (a) && isPrime(b)) && (a>0 && b>0))

a. {

9. Syatem.out.printin("Your both inputsz are prime, let's test Goldbach's
Conjuncture™);

11. if(c2z == 0]

12. System.out.printin("Goldbach's Conjuncture Satisfied™);

13. elze

14. System.out.println("Goldbach'"s Conjuncture Failed"):

15. b

16. else

17. System.out.println("At least one of your input iz not a prime or greater
than 0"):

18. }

19.

20. // Summation method
21. public int sum({int a, int b)

22. {

23. int sum;

24, 2um = a + b;
25. return sum;
2. }

27.

Z8. // Primality check method
2%, public boolean isPrime (int num)

30. {

31. // Goldbach assumes that 1 is prime
3z. if (num==1)

33. return true:;

4. else

EAT- {

36. for (int i=2;i<=Math.sgrt (num) ;i++)
s {

38. if (num%i==0)

B return false:

40. }

41. return true:;

42. }

43. }




PROBABILITY OF CHANGE POTENTIAL

o Caller € Callee

e (Callee has an influence on Caller

LOC from the line where Caller Method has
first called Callee to end of its scope

Total Lines of Code of Caller Method

e Callee's effect on Caller =




PROBABILITY OF CHANGE POTENTIAL

1. // Godbach Conjuncture Test

2. public wvoid goldbach({int a, int b)

3. |

4. System.out.println ("First input: "+a):;

5. System.out.println ("Second input: "4b):

a. int c:

7. c = sumia, b):

g. if((isPrime(a) && izPrime(b)) && (a>0 && b>0))

a. {

10. System.out.println{"Your both inputs are prime, let's test Goldbach's
Conjuncture™) ;

11. if(c%2 == 0)

12. System.out.println("Goldbach's Conjuncture Satisfied™):

a3 - else

14, System.out.println("Goldbach's Conjuncture Failed™}:

15. i

16. else

a7 - System.out.println("At least one of your input is not a prime or greater
than 0");

i8. }

19.

20. // Summation method
21, public int sum(int a, int b)

22, {

23. int sum;

24, sum = a + b:
25, return sum;
26. }

27.

28. // Primality check method
29, public boolean izPrime(int num)

30. {

31. /{ Goldbach a=ssumes that 1 i=s prime

3z. if (num==1)

33. return true;

34. else

1 {

£ i=2do=hath =q:t—|’_—_|-rj|'\ =g 3

|36.  for(imt i=2iicnum/2;i++)

37. {

as. if (num%i==0)

39, return false;

40. i3

41. return true;

42, ¥

43. }




ARCHITECTURE
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CONCLUSION

o By combining the information below;
e Change information

e Dependency

o A probabilistic model Bayesian Network has been
used to prioritize test cases.

o As a result, Rate of fault detection 1s expected
to be 1increased.
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