
AN ARCHITECTURE FOR TEST 

CASE PRIORITIZATION BASED ON 

CHANGE AND EFFECT GRAPHS 

USING BAYESIAN NETWORKS 

Authors: Ekincan Ufuktepe and Tugkan Tuglular 

Presented by: Ekincan Ufuktepe 

 

3rd Workshop on Dependability at IZTECH 

8 May 2017 

 

1 



OUTLINE 

1. Introduction 

2. Test Case Prioritization 

3. Bayesian Network 

4. Our Previous Architecture 

5. Architecture 

1. Change Effect Graph 

2. Change percentage of a code 

3. Probability of change potential  

6. Conclusion 

 
2 



INTRODUCTION 

3 



INTRODUCTION 

 When a software is modified, to reduce the risks, 

we use Regression Testing. 

 What do we do? 

 Re-run the test cases after modification. 

 Re-run all test cases? 
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INTRODUCTION 

 What could go worse? 

 Running the entire test suite for an industrial project 

has reported that the execution has taken seven 

weeks. (Report year: 2000)1,2 

 Google runs ~100.000.000 test cases per day.3 

 Google performs more than 20 code changes per 

minute and 50% of the code changes every 

month. 3 

 

 

5 

1Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Prioritizing test cases for regression 

testing. Software Engineering Notes, 25(5):102–112, 2000. 
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TEST CASE PRIORITIZATION 

 To reduce the cost of Regression Testing there 

are three techniques that could be categorized: 

 

 Regression Test case Selection (RTS). 

 

 Regression Test case Minimization (RTM). 

 

 Regression Test case Prioritization (RTP). 
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TEST CASE PRIORITIZATION 

 Regression Test case Selection focuses on 
covering the changed code between versions of 
software under test. 

 Regression Test case Minimization aims to 
identify redundant test cases and to remove them 
from the test suite in order to reduce the size of 
the test suite. 

 Regression Test case Prioritization focuses on 
identifying the ideal ordering of test cases. 

 Enhances the rate of fault detection. 

 Provide the maximum coverage sooner. 

 Formally; its objective is to find the best permutation 
of the test suite. 
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TEST CASE PRIORITIZATION 

 There are two well known and basic 

prioritization techniques; 

 Total Technique (TT) – Iterative approach 

 Additional Technique (AT) – Greedy approach 

 Both select one test case on iteration. 

 TT: Prioritize test cases through maximizing the 

total number of entities. 

 AT: Selects the test case that covers the highest 

number of entities that have not been covered 

yet. 
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BAYESIAN NETWORK 

 A Bayesian network is a graphical model that 

encodes probabilistic relationships among 

variables of interest. When used in conjunction 

with statistical techniques, the graphical model 

has several advantages for data analysis5. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 D. Heckerman. A Tutorial on Learning With Bayesian Networks, Technical Report, Microsoft Research, no. MSR-

TR-96-06, 1996,  http://research.microsoft.com/apps/pubs/?id=69588 
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OUR PREVIOUS ARCHITECTURE 

 There are 3 types of node in the Bayesian 

Network structure: 

 Class Nodes 

 Fault-proneness Nodes 

 Test Case Nodes 
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OUR PREVIOUS ARCHITECTURE 
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OUR PREVIOUS ARCHITECTURE 
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ARCHITECTURE 

 The proposed architecture utilizes three types of 

information 

 Call graph (Dependency) 

 Change percentage of a code (between two versions) 

 Potential of change probability (Dataflow analysis) 

 

 These information will be used in a probabilistic 

model: Bayesian Network 
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CHANGE EFFECT GRAPH 

 Call graph is a graphical model, which 

represents calling relationships between 

subroutines of a program. 

 

 Call graph is used to construct the layout of 

software. 

 

 It also shows dependecies of each method. 
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CHANGE EFFECT GRAPH 

 Call graph is only used to extract the nodes and 

edges. 

 

 The edge directions are reformed depending on 

the change relationship between caller and 

callee. 

 

 Since call graph edge directions could be 

changed, instead of mentioning graph as a call 

graph we call it change effect graph. 
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CHANGE EFFECT GRAPH 
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 Let’s assume that  

 Caller is Node #1 

 Callee is Node #2 

Caller  

Status 

Callee  

Status 
Condition Relation 

Unchanged Unchanged - Node#1  Node#2 

Unchanged Changed - Node#1  Node#2 

Changed Unchanged - Node#1  Node#2 

Changed Changed Caller Change > Callee Change Node#1  Node#2 

Changed Changed Caller Change = Callee Change 

 

Node#1  Node#2 

Changed Changed Caller Change < Callee Change 

 

Node#1  Node#2 



CHANGE EFFECT GRAPH 
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Original Call Graph 
Method #1 Unchanged – 

Method #2 Unchanged 
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Original Call Graph 
Method #1 Unchanged – 

Method #2 Changed 
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Original Call Graph 
Method #1 Changed – 

Method #2 Unchanged 



CHANGE EFFECT GRAPH 
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Original Call Graph 
Method #1 Changed > 

Method #2 Changed 
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Original Call Graph 
Method #1 Changed = 

Method #2 Changed 



CHANGE EFFECT GRAPH 
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Original Call Graph 
Method #1 Changed < 

Method #2 Changed 



CHANGE PERCENTAGE OF A CODE 

 To calculate the change percentage of a code we 

need 2 (Current & Previous) versions of a code. 

 

 For more precise calculation of change 

percentage, rather than analyzing the source 

codes, bytecodes (Java) of two versions are 

compared. 

 Avoid difference in coding styles. 
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CHANGE PERCENTAGE OF A CODE 

 The change percentage is simply calculated by 

changed lines of bytecode.  

 

 Change percentages are calculate by method 

level. 

 

Change Percentage = 
𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑎𝑛𝑔𝑒𝑑 𝐿𝑖𝑛𝑒𝑠 𝑜𝑓 𝑏𝑦𝑡𝑒𝑐𝑜𝑑𝑒

𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑛𝑒𝑠 𝑜𝑓 𝑏𝑦𝑡𝑒𝑐𝑜𝑑𝑒
 

26 



PROBABILITY OF CHANGE POTENTIAL  

 A change in a method can effect both it’s caller 

and callee. 

 A changed caller method can effect it’s callee by 

passing an input to its parameter. 

 A changed callee method can effect it’s caller by it’s 

returned value. 

 

 Therefore, dataflow analysis is performed. 
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PROBABILITY OF CHANGE POTENTIAL  
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PROBABILITY OF CHANGE POTENTIAL  

 

 

 Caller  Callee 

 Caller has an influence on Callee. 

 

 

 𝐶𝑎𝑙𝑙𝑒𝑟′𝑠 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑛 𝐶𝑎𝑙𝑙𝑒𝑒 =

𝐿𝑂𝐶 𝑤ℎ𝑒𝑟𝑒 𝐶𝑎𝑙𝑙𝑒𝑒 𝑀𝑒𝑡ℎ𝑜𝑑′𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 
𝑓𝑖𝑟𝑠𝑡 𝑢𝑠𝑒𝑑 𝑙𝑖𝑛𝑒 𝑡𝑜 𝑒𝑛𝑑 𝑜𝑓 𝑖𝑡𝑠 𝑠𝑐𝑜𝑝𝑒

𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑛𝑒𝑠 𝑜𝑓 𝐶𝑜𝑑𝑒 𝑜𝑓 𝐶𝑎𝑙𝑙𝑒𝑒 𝑀𝑒𝑡ℎ𝑜𝑑
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PROBABILITY OF CHANGE POTENTIAL  
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PROBABILITY OF CHANGE POTENTIAL  

 

 

 Caller  Callee 

 Callee has an influence on Caller 

 

 

 𝐶𝑎𝑙𝑙𝑒𝑒′𝑠 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑛 𝐶𝑎𝑙𝑙𝑒𝑟 =

𝐿𝑂𝐶 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒 𝑤ℎ𝑒𝑟𝑒 𝐶𝑎𝑙𝑙𝑒𝑟 𝑀𝑒𝑡ℎ𝑜𝑑 ℎ𝑎𝑠 
𝑓𝑖𝑟𝑠𝑡 𝑐𝑎𝑙𝑙𝑒𝑑 𝐶𝑎𝑙𝑙𝑒𝑒 𝑡𝑜 𝑒𝑛𝑑 𝑜𝑓 𝑖𝑡𝑠 𝑠𝑐𝑜𝑝𝑒

𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑛𝑒𝑠 𝑜𝑓 𝐶𝑜𝑑𝑒 𝑜𝑓 𝐶𝑎𝑙𝑙𝑒𝑟 𝑀𝑒𝑡ℎ𝑜𝑑
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PROBABILITY OF CHANGE POTENTIAL  
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ARCHITECTURE 
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CONCLUSION 

 By combining the information below; 

 Change information 

 Dependency 

 

 A probabilistic model Bayesian Network has been 

used to prioritize test cases. 

 

 As a result, Rate of fault detection is expected 

to be increased. 
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