
AN ARCHITECTURE FOR TEST

CASE PRIORITIZATION BASED ON

CHANGE AND EFFECT GRAPHS

USING BAYESIAN NETWORKS

Authors: Ekincan Ufuktepe and Tugkan Tuglular

Presented by: Ekincan Ufuktepe

3rd Workshop on Dependability at IZTECH

8 May 2017

1

OUTLINE

1. Introduction

2. Test Case Prioritization

3. Bayesian Network

4. Our Previous Architecture

5. Architecture

1. Change Effect Graph

2. Change percentage of a code

3. Probability of change potential

6. Conclusion

2

INTRODUCTION

3

INTRODUCTION

 When a software is modified, to reduce the risks,

we use Regression Testing.

 What do we do?

 Re-run the test cases after modification.

 Re-run all test cases?

4

INTRODUCTION

 What could go worse?

 Running the entire test suite for an industrial project

has reported that the execution has taken seven

weeks. (Report year: 2000)1,2

 Google runs ~100.000.000 test cases per day.3

 Google performs more than 20 code changes per

minute and 50% of the code changes every

month. 3

5

1Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Prioritizing test cases for regression

testing. Software Engineering Notes, 25(5):102–112, 2000.

2Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Test case prioritization: A family of

empirical studies. IEEE Transactions on Software Engineering, 28(2):159–182, 2002.

3Ashish Kumar. Development at the speed and scale of google. International Software Development

Conference, 2010, Presentation slides are available at: qconsf.com/sf2010/

TEST CASE PRIORITIZATION

6 4S. Yoo and M. Harman, “Regression testing minimization, selection and prioritization: a survey,”

Software Testing, Verification and Reliability, vol. 24, no. 8, pp. n/a–n/a, 2010

TEST CASE PRIORITIZATION

 To reduce the cost of Regression Testing there

are three techniques that could be categorized:

 Regression Test case Selection (RTS).

 Regression Test case Minimization (RTM).

 Regression Test case Prioritization (RTP).

7

TEST CASE PRIORITIZATION

 Regression Test case Selection focuses on
covering the changed code between versions of
software under test.

 Regression Test case Minimization aims to
identify redundant test cases and to remove them
from the test suite in order to reduce the size of
the test suite.

 Regression Test case Prioritization focuses on
identifying the ideal ordering of test cases.

 Enhances the rate of fault detection.

 Provide the maximum coverage sooner.

 Formally; its objective is to find the best permutation
of the test suite.

8

TEST CASE PRIORITIZATION

 There are two well known and basic

prioritization techniques;

 Total Technique (TT) – Iterative approach

 Additional Technique (AT) – Greedy approach

 Both select one test case on iteration.

 TT: Prioritize test cases through maximizing the

total number of entities.

 AT: Selects the test case that covers the highest

number of entities that have not been covered

yet.

9

BAYESIAN NETWORK

 A Bayesian network is a graphical model that

encodes probabilistic relationships among

variables of interest. When used in conjunction

with statistical techniques, the graphical model

has several advantages for data analysis5.

5 D. Heckerman. A Tutorial on Learning With Bayesian Networks, Technical Report, Microsoft Research, no. MSR-

TR-96-06, 1996, http://research.microsoft.com/apps/pubs/?id=69588

10

http://research.microsoft.com/apps/pubs/?id=69588

BAYESIAN NETWORK

11

6 http://en.wikipedia.org/wiki/Bayesian_network

OUR PREVIOUS ARCHITECTURE

 There are 3 types of node in the Bayesian

Network structure:

 Class Nodes

 Fault-proneness Nodes

 Test Case Nodes

12

OUR PREVIOUS ARCHITECTURE

13 7 S. Mirarab and L. Tahvildari, Fundamental Approaches to Software Engineering, vol. 4422 of

Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007

OUR PREVIOUS ARCHITECTURE

14
8 Ufuktepe, E. and Tuglular, T., 2016, June. Automation Architecture for Bayesian Network Based

Test Case Prioritization and Execution. In Computer Software and Applications Conference

(COMPSAC), 2016 IEEE 40th Annual (Vol. 2, pp. 52-57). IEEE.

ARCHITECTURE

 The proposed architecture utilizes three types of

information

 Call graph (Dependency)

 Change percentage of a code (between two versions)

 Potential of change probability (Dataflow analysis)

 These information will be used in a probabilistic

model: Bayesian Network

15

CHANGE EFFECT GRAPH

 Call graph is a graphical model, which

represents calling relationships between

subroutines of a program.

 Call graph is used to construct the layout of

software.

 It also shows dependecies of each method.

16

CHANGE EFFECT GRAPH

 Call graph is only used to extract the nodes and

edges.

 The edge directions are reformed depending on

the change relationship between caller and

callee.

 Since call graph edge directions could be

changed, instead of mentioning graph as a call

graph we call it change effect graph.

17

CHANGE EFFECT GRAPH

18

 Let’s assume that

 Caller is Node #1

 Callee is Node #2

Caller

Status

Callee

Status
Condition Relation

Unchanged Unchanged - Node#1  Node#2

Unchanged Changed - Node#1  Node#2

Changed Unchanged - Node#1  Node#2

Changed Changed Caller Change > Callee Change Node#1  Node#2

Changed Changed Caller Change = Callee Change

Node#1  Node#2

Changed Changed Caller Change < Callee Change

Node#1  Node#2

CHANGE EFFECT GRAPH

19

Original Call Graph
Method #1 Unchanged –

Method #2 Unchanged

CHANGE EFFECT GRAPH

20

Original Call Graph
Method #1 Unchanged –

Method #2 Changed

CHANGE EFFECT GRAPH

21

Original Call Graph
Method #1 Changed –

Method #2 Unchanged

CHANGE EFFECT GRAPH

22

Original Call Graph
Method #1 Changed >

Method #2 Changed

CHANGE EFFECT GRAPH

23

Original Call Graph
Method #1 Changed =

Method #2 Changed

CHANGE EFFECT GRAPH

24

Original Call Graph
Method #1 Changed <

Method #2 Changed

CHANGE PERCENTAGE OF A CODE

 To calculate the change percentage of a code we

need 2 (Current & Previous) versions of a code.

 For more precise calculation of change

percentage, rather than analyzing the source

codes, bytecodes (Java) of two versions are

compared.

 Avoid difference in coding styles.

25

CHANGE PERCENTAGE OF A CODE

 The change percentage is simply calculated by

changed lines of bytecode.

 Change percentages are calculate by method

level.

Change Percentage =
𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑎𝑛𝑔𝑒𝑑 𝐿𝑖𝑛𝑒𝑠 𝑜𝑓 𝑏𝑦𝑡𝑒𝑐𝑜𝑑𝑒

𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑛𝑒𝑠 𝑜𝑓 𝑏𝑦𝑡𝑒𝑐𝑜𝑑𝑒

26

PROBABILITY OF CHANGE POTENTIAL

 A change in a method can effect both it’s caller

and callee.

 A changed caller method can effect it’s callee by

passing an input to its parameter.

 A changed callee method can effect it’s caller by it’s

returned value.

 Therefore, dataflow analysis is performed.

27

PROBABILITY OF CHANGE POTENTIAL

28

PROBABILITY OF CHANGE POTENTIAL

 Caller  Callee

 Caller has an influence on Callee.

 𝐶𝑎𝑙𝑙𝑒𝑟′𝑠 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑛 𝐶𝑎𝑙𝑙𝑒𝑒 =

𝐿𝑂𝐶 𝑤ℎ𝑒𝑟𝑒 𝐶𝑎𝑙𝑙𝑒𝑒 𝑀𝑒𝑡ℎ𝑜𝑑′𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
𝑓𝑖𝑟𝑠𝑡 𝑢𝑠𝑒𝑑 𝑙𝑖𝑛𝑒 𝑡𝑜 𝑒𝑛𝑑 𝑜𝑓 𝑖𝑡𝑠 𝑠𝑐𝑜𝑝𝑒

𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑛𝑒𝑠 𝑜𝑓 𝐶𝑜𝑑𝑒 𝑜𝑓 𝐶𝑎𝑙𝑙𝑒𝑒 𝑀𝑒𝑡ℎ𝑜𝑑

29

PROBABILITY OF CHANGE POTENTIAL

30

PROBABILITY OF CHANGE POTENTIAL

 Caller  Callee

 Callee has an influence on Caller

 𝐶𝑎𝑙𝑙𝑒𝑒′𝑠 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑛 𝐶𝑎𝑙𝑙𝑒𝑟 =

𝐿𝑂𝐶 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒 𝑤ℎ𝑒𝑟𝑒 𝐶𝑎𝑙𝑙𝑒𝑟 𝑀𝑒𝑡ℎ𝑜𝑑 ℎ𝑎𝑠
𝑓𝑖𝑟𝑠𝑡 𝑐𝑎𝑙𝑙𝑒𝑑 𝐶𝑎𝑙𝑙𝑒𝑒 𝑡𝑜 𝑒𝑛𝑑 𝑜𝑓 𝑖𝑡𝑠 𝑠𝑐𝑜𝑝𝑒

𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑛𝑒𝑠 𝑜𝑓 𝐶𝑜𝑑𝑒 𝑜𝑓 𝐶𝑎𝑙𝑙𝑒𝑟 𝑀𝑒𝑡ℎ𝑜𝑑

31

PROBABILITY OF CHANGE POTENTIAL

32

ARCHITECTURE

33

CONCLUSION

 By combining the information below;

 Change information

 Dependency

 A probabilistic model Bayesian Network has been

used to prioritize test cases.

 As a result, Rate of fault detection is expected

to be increased.

34

THANK YOU

35

