Tarski: A Platform for Automated Analysis of Dynamically Configurable Traceability Semantics

Ferhat Erata^{1,2} Moharram Challenger^{1,4} Bedir Tekinerdogan¹ Anne Monceaux³ Eray Tuzun⁵ Geylani Kardas⁴

¹Information Technology Group, Wageningen University, The Netherlands
 ²UNIT Information Technologies R&D Ltd., Izmir, Turkey
 ³System Engineering Platforms, AIRBUS Group Innovations, Toulouse, France
 ⁴International Computer Institute, Ege University, Izmir, Turkey
 ⁵Academy Directorate, HAVELSAN Inc., Ankara, Turkey

3rd Workshop on Dependability at Izmir Institute of Technology

Acknowledgements

- Scientific and Technological Research Council of Turkey (TUBITAK), Technology and Innovation Funding Programs Directorate (TEYDEB) under project# 9140014, 9150181
- Minister for the Economy, Industry and Digital Affairs of France, Directorate-General for Enterprise (DGE) under contract# 14293020
- European Cooperation in Science and Technology (COST) Action IC1404 "Multi-Paradigm Modelling for Cyber-Physical Systems"

Exploitations

ITEA-ModelWriter: Synchronized Document Engineering Platform

https://itea3.org/project/modelwriter.html

ITEA-ASSUME: Affordable Safe & Secure Mobility Evolution

https://itea3.org/project/assume.html

EUREKA 🖾

innovation across borders

• □ ▶ • < </p>
• □ ▶ • < </p>

Source codes, datasets and screencasts are available at:

https://github.com/ModelWriter/WP3

Outline

- Motivation
- Industrial Use Cases

2 Approach

- Traceability Domain Model
- First-order Relational Model and Logic
- Type Annotation and Trace-Relations
- Formal Semantics and Automated Analysis

3 Demonstration

- Formal Specification of Traceability Semantics
- Traceability Management
- First-order Model Management
- Automated Analysis of Traceability

4 Conclusion and Future Work

Approach Demonstration Conclusion and Future Work Motivation Industrial Use Cases

Outline

- Motivation
- Industrial Use Cases

2 Approach

- Traceability Domain Model
- First-order Relational Model and Logic
- Type Annotation and Trace-Relations
- Formal Semantics and Automated Analysis

3 Demonstration

- Formal Specification of Traceability Semantics
- Traceability Management
- First-order Model Management
- Automated Analysis of Traceability
- 4 Conclusion and Future Work

→ < ∃ →</p>

Motivation Industrial Use Cases

What is Traceability?

Traceability can be defined as the degree to which a relationship can be established among work products (aka. artefacts) of the development process.

What is case-based or project-based traceability configuration?

Rigorously specification the semantics of traceability elements.

Why is Reasoning about Traceability important?

Richer and precise automated traceability analysis. Compliance and Certification in automotive and aviation industries.

Motivation Industrial Use Cases

Challenges of Traceability in Industry

Semantically meaningful traceability

 traceability relations should have a rich semantic (meaning) instead of being simple bi-directional referential relation

Configuration of traceability (possibly dynamically)

• Traceability Semantics is often statically defined.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Motivation Industrial Use Cases

Challenges of Traceability in Industry

Semantically meaningful traceability

 traceability relations should have a rich semantic (meaning) instead of being simple bi-directional referential relation

Configuration of traceability (possibly dynamically)

- Traceability Semantics is often statically defined.
- The semantics cannot be easily adapted for the needs of different projects.

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation Industrial Use Cases

Challenges of Traceability in Industry

Semantically meaningful traceability

 traceability relations should have a rich semantic (meaning) instead of being simple bi-directional referential relation

Configuration of traceability (possibly dynamically)

- Traceability Semantics is often statically defined.
- The semantics cannot be easily adapted for the needs of different projects.
- Different traceable elements and the relation types exist in industrial settings,

・ 同 ト ・ ヨ ト ・ ヨ ト

Motivation Industrial Use Cases

Challenges of Traceability in Industry

Semantically meaningful traceability

 traceability relations should have a rich semantic (meaning) instead of being simple bi-directional referential relation

Configuration of traceability (possibly dynamically)

- Traceability Semantics is often statically defined.
- The semantics cannot be easily adapted for the needs of different projects.
- Different traceable elements and the relation types exist in industrial settings,
- Likewise, different traceability analysis scenarios exists. Several industries demands formal proofs of Traceability.

ヘロト ヘヨト ヘヨト

Approach Demonstration Conclusion and Future Work Motivation Industrial Use Cases

Outline

- Motivation
- Industrial Use Cases
- Approach
 - Traceability Domain Model
 - First-order Relational Model and Logic
 - Type Annotation and Trace-Relations
 - Formal Semantics and Automated Analysis
- 3 Demonstration
 - Formal Specification of Traceability Semantics
 - Traceability Management
 - First-order Model Management
 - Automated Analysis of Traceability
- ④ Conclusion and Future Work

→ < ∃ →</p>

Approach Demonstration Conclusion and Future Work Motivation Industrial Use Cases

Airbus Group Innovations System Installation Design Principles

Approach Demonstration Conclusion and Future Work Motivation Industrial Use Cases

Airbus Group Innovations System Installation Design Principles

SIDP92A001V-A-784

For installation of optical and electrical harnesses additional clearance for sagging (s) shall be provided as detailed below:

- s... Sagging of bundle (real behavior of physical bundle in A/C due to gravity, ageing, etc.)
- D...Required Distance
- L...Actual length of a bundle segment between two Attachment Points (as designed in DMU)

Figure 6: Sagging of bundles between attachment points

Note: Unless the bundle has a straight routing, L is bigger than the pitch between the Attachment Points.

(日)

Approach Demonstration Conclusion and Future Work Motivation Industrial Use Cases

Airbus Group Innovations System Installation Design Principles

Motivation Industrial Use Cases

Havelsan Aerospace Electronics Industry Application Lifecycle Management

DO-178C

Software Considerations in Airborne Systems and Equipment Certification

Traceability

DO-178 requires a documented connection (called a trace) between the certification artifacts. For example, a Low Level Requirement (LLR) traces up to a High Level Requirement (HLR). A traceability analysis is then used to ensure that each *requirement* is fulfilled by the source code, that each *requirement* is tested, that each line of source code has a purpose (is connected to a requirement), and so forth. Traceability ensures the system is complete.

< ロ > < 同 > < 三 > < 三 >

Traceability Analysis Activities defined in DO-178

F. Erata et al.

Traceability Analysis on Tarski Platform

Traceability Domain Model First-order Relational Model and Logic Type Annotation and Trace-Relations Formal Semantics and Automated Analysis

Outline

- Introduction
 - Motivation
 - Industrial Use Cases

2 Approach

• Traceability Domain Model

- First-order Relational Model and Logic
- Type Annotation and Trace-Relations
- Formal Semantics and Automated Analysis

3 Demonstration

- Formal Specification of Traceability Semantics
- Traceability Management
- First-order Model Management
- Automated Analysis of Traceability
- 4 Conclusion and Future Work

(日)

Introduction Approach Conclusion and Future Work Traceability Domain Model

A conceptual model for traceability and its extension

Introduction Approach Conclusion and Future Work Traceability Domain Model

Semantics of *contain relation* (represents decomposition)

F. Erata et al.

Traceability Domain Model

First-order Relational Model and Logic Type Annotation and Trace-Relations Formal Semantics and Automated Analysis

Semantics of ContractRequirement

Traceability Domain Model First-order Relational Model and Logic Type Annotation and Trace-Relations Formal Semantics and Automated Analysis

Outline

- Motivation
- Industrial Use Cases

2 Approach

- Traceability Domain Model
- First-order Relational Model and Logic
- Type Annotation and Trace-Relations
- Formal Semantics and Automated Analysis

3 Demonstration

- Formal Specification of Traceability Semantics
- Traceability Management
- First-order Model Management
- Automated Analysis of Traceability
- 4 Conclusion and Future Work

(日)

Introduction Traces Approach First-C Demonstration Type Conclusion and Future Work Forma

Traceability Domain Model First-order Relational Model and Logic Type Annotation and Trace-Relations Formal Semantics and Automated Analysis

Fragments of a traceability instance

F. Erata et al.

Traceability Domain Model First-order Relational Model and Logic Type Annotation and Trace-Relations Formal Semantics and Automated Analysis

First-order relational model of the traceability instance

The universe of traceability of the current state

 $D_T : \{S_1, E_1, E_2, E_3, F_1, M_1, M_2, P_2\}$

The *type signature*

 $\Sigma_{\mathcal{T}}: \{ R_{EJ} \sqsubseteq E \to C \sqcup M \sqcup F, \ R_{JRE} \sqsubseteq F \to S \to E \}$

The *relational model* under the signature $\Sigma_{\mathcal{T}}$

 $\begin{array}{l} M_t : \{S = \{\langle S_1 \rangle\}, E = \{\langle E_1 \rangle, \langle E_2 \rangle, \langle E_3 \rangle\}, J = \\ \{\langle F_1 \rangle, \langle M_1 \rangle, \langle M_2 \rangle, \langle P_2 \rangle\}, R_{EJ} = \{\langle E_2, M_1 \rangle, \langle E_2, M_2 \rangle, \langle E_3, P_2 \rangle\}, \\ R_{JRE} = \{\langle F_1, S_1, E_1 \rangle\} \end{array}$

F. Erata et al. Traceability Analysis on Tarski Platform

< ロ > < 同 > < 三 > < 三 >

Traceability Domain Model First-order Relational Model and Logic Type Annotation and Trace-Relations Formal Semantics and Automated Analysis

First-order Relational Logic (FOL + Relational Calculus)

. Relational Join and \sim Transpose

The *dot join* and *transpose* operators ensure a uniform way of navigation between *trace-locations* through *trace-links* in constraints.

* (Reflexive) Transitive Closure

Transitive Closure allows the encoding of common reachability constraints that otherwise could not be expressed in FOL, such as preventing cyclic dependencies between *trace-locations*.

Domain and Range Restrictions

The restriction operators are used to filter relations to a given domain or range.

Traceability Domain Model First-order Relational Model and Logic Type Annotation and Trace-Relations Formal Semantics and Automated Analysis

First-order Relational Logic (FOL + Relational Calculus)

. Relational Join and \sim Transpose

$$\begin{split} E.R_{EJ} &= \{ \langle E_1 \rangle, \langle E_2 \rangle, \langle E_3 \rangle \}. \{ \langle E_2, M_1 \rangle, \langle E_2, M_2 \rangle, \langle E_3, P_2 \rangle \} \\ &= \{ \langle M_1 \rangle, \langle M_2 \rangle, \langle P_2 \rangle \} \\ J. &\sim R_{EJ} = \{ \langle F_1 \rangle, \langle M_1 \rangle, \langle M_2 \rangle, \langle P_2 \rangle \}. \{ \langle M_1, E_2 \rangle, \langle M_2, E_2 \rangle, \langle P_2, E_3 \rangle \} \\ &= \{ \langle E_2 \rangle, \langle E_3 \rangle \} \end{split}$$

* (Reflexive) Transitive Closure

$$^{\{\langle M_1, E_1 \rangle, \langle E_1, C_1 \rangle\}} = \{\langle M_1, E_1 \rangle, \langle E_1, C_1 \rangle, \langle M_1, C_1 \rangle\}$$

Domain and Range Restrictions

 $P <: R_{JE} = \{ \langle P_2 \rangle \} <: \{ \langle M_1, E_2 \rangle, \langle M_2, E_2 \rangle, \langle P_2, E_3 \rangle \} = \{ \langle P_2, E_3 \rangle \}$

< ロ > < 同 > < 三 > < 三 >

Traceability Domain Model First-order Relational Model and Logic **Type Annotation and Trace-Relations** Formal Semantics and Automated Analysis

Outline

- Motivation
- Industrial Use Cases

2 Approach

- Traceability Domain Model
- First-order Relational Model and Logic

• Type Annotation and Trace-Relations

• Formal Semantics and Automated Analysis

3 Demonstration

- Formal Specification of Traceability Semantics
- Traceability Management
- First-order Model Management
- Automated Analysis of Traceability
- 4 Conclusion and Future Work

(日)

Traceability Domain Model First-order Relational Model and Logic **Type Annotation and Trace-Relations** Formal Semantics and Automated Analysis

Basic Type and SubType

Traceability Domain Model First-order Relational Model and Logic **Type Annotation and Trace-Relations** Formal Semantics and Automated Analysis

Relation Types

Traceability Domain Model First-order Relational Model and Logic Type Annotation and Trace-Relations Formal Semantics and Automated Analysis

Outline

- Motivation
- Industrial Use Cases

2 Approach

- Traceability Domain Model
- First-order Relational Model and Logic
- Type Annotation and Trace-Relations

• Formal Semantics and Automated Analysis

3 Demonstration

- Formal Specification of Traceability Semantics
- Traceability Management
- First-order Model Management
- Automated Analysis of Traceability
- 4 Conclusion and Future Work

(日)

Formal Specification of an example configuration

```
abstract sig Artefact { depends: set Artefact}
1
2
3
   -- Locate@File
   one sig Specification extends Artefact {
4
5
       contract: some ContractRequirement}
6
7
   -- Locate@Text
8
   sig ContractRequirement extends Artefact {
9
       system: set SystemRequirement,
10
       contains: set ContractRequirement}
11
12
   -- Locate@RegIF
13
   sig SystemRequirement extends Artefact {
14
       satisfiedBy: set Implementation,
15
       requires: set SystemRequirement,
16
       refines: set SystemRequirement}
```

Introduction Traceability Domain Model Approach First-order Relational Model and Logic Demonstration Type Annotation and Trace-Relations Formal Semantics and Automated Analysis

```
17
   abstract sig Implementation extends Artefact {
18
        fulfills: lone ContractRequirement}
19
20
   -- Locate@Java
21
   sig Code, Component extends Implementation {}
22
23
   -- Locate@EMF
24
   sig Model extends Implementation {
25
        transforms, conforms: set Model,
26
        generates: set (Code \cup Component)}
27
28
   -- Semantics@SystemRequirement.satisfiedBy
29
   fact {\forall i: Implementation | some i.~satisfiedBy}
```

- ロ ト - 4 同 ト - 4 回 ト

Traceability Domain Model First-order Relational Model and Logic Type Annotation and Trace-Relations Formal Semantics and Automated Analysis

Automated analysis functions over Traceability Model

Consistency Checking

The system checks whether the user model satisfies the specification or not.

Reasoning about Trace-relations

If the model is a partial (incomplete), the platform tries to complete the model with respect to the semantics declared in the specification inferring new trace-relations on the model.

Trace-elements Discovery

If a de-synchronization occurs on one or more ends of a *trace-link* probably caused by a change such as deletion of a trace-location, we try to repair the broken link based on the specified semantics.

Traceability Domain Model First-order Relational Model and Logic Type Annotation and Trace-Relations Formal Semantics and Automated Analysis

Reasoning about Trace-relations

```
30
   -- Reason@ContractRequirement.system
31
   fact {\forall s:SystemRequirement, s': s.*~refines |
32
        s'.~system = s.~system}
33
34
   -- Reason@SystemRequirement.requires
35
   fact { ∀ s, s': SystemRequirement |
36
        s' in s.refines \implies s in s'.requires }
37
38
    -- Reason@Implementation.fulfills
39
   fact {\forall i: Implementation, s: i.~satisfiedBy
        i.fulfills = s.~system }
40
```

Formal Specification of Traceability Semantics Traceability Management First-order Model Management Automated Analysis of Traceability

Outline

- Introduction
 - Motivation
 - Industrial Use Cases

2 Approach

- Traceability Domain Model
- First-order Relational Model and Logic
- Type Annotation and Trace-Relations
- Formal Semantics and Automated Analysis

3 Demonstration

- Formal Specification of Traceability Semantics
- Traceability Management
- First-order Model Management
- Automated Analysis of Traceability
- 4 Conclusion and Future Work

(日)

Formal Specification of Traceability Semantics Traceability Management First-order Model Management Automated Analysis of Traceability

Configuration of User's Workspace

F. Erata et al.

Traceability Analysis on Tarski Platform

Formal Specification of Traceability Semantics Traceability Management First-order Model Management Automated Analysis of Traceability

Configuration of User's Workspace

Formal Specification of Traceability Semantics Traceability Management First-order Model Management Automated Analysis of Traceability

Type Hierarchy from the Specification

F. Erata et al.

Traceability Analysis on Tarski Platform

Formal Specification of Traceability Semantics Traceability Management First-order Model Management Automated Analysis of Traceability

Type Hierarchy from the Specification

F. Erata et al.

Traceability Analysis on Tarski Platform

Formal Specification of Traceability Semantics Traceability Management First-order Model Management Automated Analysis of Traceability

Outline

- Introduction
 - Motivation
 - Industrial Use Cases

2 Approach

- Traceability Domain Model
- First-order Relational Model and Logic
- Type Annotation and Trace-Relations
- Formal Semantics and Automated Analysis

3 Demonstration

• Formal Specification of Traceability Semantics

Traceability Management

- First-order Model Management
- Automated Analysis of Traceability

4 Conclusion and Future Work

(日)

Formal Specification of Traceability Semantics Traceability Management First-order Model Management Automated Analysis of Traceability

Creating *Trace-locations* and Assigning Types

User	Traceability Framework	Tarski Platform	Alloy
Configuration of Eclipse Workspace Loading/Updating Spec.	Alloy Specification	Formal Specification of the semantics Functions Load/Update Functions Fun	alloy4compiler
User's Workspace Creating Trace Location Text Fragments EClasses, EObjects XML Elements Java Elements Update/Delete Trace Location Assigning Types	Traceability Management	Adaptation of Tarski Platform to Traceability Domain Function Function Interpretation interprets First-order Model Management Model • Relation Universe • • • • • • • • • • • • • • • • • • •	Abstract Syntax Tree generates Type hierarchy (sigs, fields) & Semantics (facts) uses
Automated Analysis of Traceability Analyzing Traceability	The user can assign types to both trace locations and links using the relation names of the specification Reasoning about trace instance	Automated Analysis Functions Consistency Check Reason about Relations Trace Elements Discovery	Decision Procedure KodKod API Call KodKod Relational Model Finder

F. Erata et al.

Traceability Analysis on Tarski Platform

Formal Specification of Traceability Semantics Traceability Management First-order Model Management Automated Analysis of Traceability

Assigning a Sub Type to a Trace-location

Formal Specification of Traceability Semantics Traceability Management First-order Model Management Automated Analysis of Traceability

Assigning a binary Field Type to a Trace-link

Introduction Formal Specification of Traceability Semantics Approach **Traceability Management** Demonstration First-order Model Management usion and Future Work Automated Analysis of Traceability

Selecting a Trace-Location from the co-domain of the type

Formal Specification of Traceability Semantics Traceability Management First-order Model Management Automated Analysis of Traceability

Traceability Information

F. Erata et al.

Traceability Analysis on Tarski Platform

Formal Specification of Traceability Semantics Traceability Management First-order Model Management Automated Analysis of Traceability

Outline

- Introduction
 - Motivation
 - Industrial Use Cases

2 Approach

- Traceability Domain Model
- First-order Relational Model and Logic
- Type Annotation and Trace-Relations
- Formal Semantics and Automated Analysis

3 Demonstration

- Formal Specification of Traceability Semantics
- Traceability Management
- First-order Model Management
- Automated Analysis of Traceability
- 4 Conclusion and Future Work

(日)

Formal Specification of Traceability Semantics Traceability Management First-order Model Management Automated Analysis of Traceability

First-order Relational Model

F. Erata et al.

Traceability Analysis on Tarski Platform

Formal Specification of Traceability Semantics Traceability Management First-order Model Management Automated Analysis of Traceability

Dynamic Configuration & Model Management

Formal Specification of Traceability Semantics Traceability Management First-order Model Management Automated Analysis of Traceability

Outline

- Introduction
 - Motivation
 - Industrial Use Cases

2 Approach

- Traceability Domain Model
- First-order Relational Model and Logic
- Type Annotation and Trace-Relations
- Formal Semantics and Automated Analysis

3 Demonstration

- Formal Specification of Traceability Semantics
- Traceability Management
- First-order Model Management
- Automated Analysis of Traceability
- 4 Conclusion and Future Work

(日)

Formal Specification of Traceability Semantics Traceability Management First-order Model Management Automated Analysis of Traceability

Reasoning about Trace-instance

F. Erata et al.

Traceability Analysis on Tarski Platform

Formal Specification of Traceability Semantics Traceability Management First-order Model Management Automated Analysis of Traceability

Automated Analysis of Traceability

Formal Specification of Traceability Semantics Traceability Management First-order Model Management Automated Analysis of Traceability

Synthesis of Internal Representation

F. Erata et al.

Traceability Analysis on Tarski Platform

- Should we consider also the temporal behavior of the traceability? Interesting analysis scenarios exist in industry
- We are not supporting ordered sets of Alloy which usually help model the dynamic behaviour.
- First-order theory of relations might be a candidate for traceability in Multi-pardigm Modeling for Cyber-physical Systems. Preliminary results shows that the approach works on the synchronization of design rules with design/installation of physical components.
- However, DPLL(T) solvers does not currently exists for this fragment of the theory.
- Alloy Language is too expressive for the domain of traceability. We're working on the formalization of a First-order theory for traceability and the development of a domain-specific language for traceability.

Modeling and Reasoning Approaches

