
FSE 2016

IztechDependability2018

Analyzing the Validity of

Selective Mutation with

Dominator Mutants

Bob Kurtz, Paul Ammann, Jeff Offutt, Marcio E.
Delamaro, Mariet Kurtz, and Nida Gökçe

George Mason University, USA

Universidade de São Paulo, Brazil

The MITRE Corporation

Muğla Sıtkı Koçman University, Turkey

FSE 2016

IztechDependability2018

Outline

 Mutation Testing

 Mutant Reduction Strategies

 Selective Mutation

 Dominator Mutants

 Research Questions

 Case Study

 Threats to Validity

 Conclusions

 Future Works

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

2

FSE 2016

IztechDependability2018

Mutation Testing

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

3

 A test criterion that generates a set of alternate programs, called mutants, and than

challenges the tester to design tests to detect the mutants.

 Tests that cause a mutant to behave differently from the original program are said to

detect, or kill, the mutant.

 Some mutants behave exactly the same as the original on all inputs. These are called

equivalent mutants and cannot be killed.

 Mutants are generated by mutation operators.

 A mutation operator is a rule that generates variants of a given program based on the

occurrence of the particular syntactic elements.

FSE 2016

IztechDependability2018

int max(int i, int j)
{
if (i <= j) {
return i;

}
else {
return j;

}
}

Mutation Testing

int max(int i, int j)

{

if (i > j) {

return i;

}

else {

return j;

}

}

Mutation

Operators

ROR
LVR

int max(int i, int j)
{
if (i > j) {
return j;

}
else {
return j;

}
}

AOI

int max(int i, int j)
{
if (i > j) {
return i;

}
else {
return j++;

}
}

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

4

 ROR – Relational Operator Replacement

 LVR - Literal Value Replacement

 AOI – Aritmetic Operator Insertion

FSE 2016

IztechDependability2018

Mutation testing

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

int max(int i, int j)
{

if (i > j) {
return i;

}
else {

return j;
}

}

int max(int i, int j)
{

if (i > j) {
return --i;

}
else {

return j;
}

}

int max(int i, int j)
{

if (i > j) {
return j;

}
else {

return j;
}

}

Original Mutants

int max(int i, int j)
{

if (i > j) {
return i;

}
else {

return j++;
}

}

int max(int i, int j)
{

if (i > j) {
return i;

}
else {

return i;
}

}

int max(int i, int j)
{

if (i >= j) {
return i;

}
else {

return j;
}

}

int max(int i, int j)
{

if (i <= j) {
return i;

}
else {

return j;
}

}

int max(int i, int j)
{

if (i) {
return i;

}
else {

return j;
}

}

int max(int i, int j)
{

if (i > i) {
return i;

}
else {

return j;
}

}

✓

≠

assertEquals(2,

max(2,1));

5

FSE 2016

IztechDependability2018

Mutation testing

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

int max(int i, int
j)
{

if (i > j) {
return i;

}
else {
return j;

}
}

2000 SLOC

20,000 Mutants

6

Mutation operators produced far more mutants

than necessary.

One response to this observation was selective

mutation, which delibaratly limits the number of

mutation operators to a small, carefully chosen

set.

FSE 2016

IztechDependability2018

What went wrong?

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

int max(int i, int j)
{

if (i > j) {
return i;

}
else {

return j;
}

}

int max(int i, int j)
{

if (i >= j) {
return i;

}
else {

return j;
}

} ✓✓

=
int max(int i, int j)
{

if (i > j) {
return i;

}
else {

return j++;
}

}

7

✓

 Equivalent mutants

 Syntactically different but semantically identical to the original program

 Cannot be killed by tests, must be manually evaluated one-by-one

 Requires unrealistic amounts of work!

FSE 2016

IztechDependability2018

What went wrong?

 Redundant mutants

 A mutant is redundant if it is

always killed when some

other mutant is killed

 ≈98% of non-equivalent mutants

 How far along is testing?

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

8

FSE 2016

IztechDependability2018

Mutant reduction strategies

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

9

CCDL

 Selective mutation

 Use the “best” operators to

produce fewer mutants

OAAN SRSR

int max(int i, int j)
{
if (i > j) {
return i;

}
else {
return j;

}
}

ORAN VLSR …

FSE 2016

IztechDependability2018

Mutant reduction strategies

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

10

 Random mutant selection

 Typically select ≈5%

of all mutants

CCDL OAAN SRSR

int max(int i, int j)
{
if (i > j) {
return i;

}
else {
return j;

}
}

ORAN VLSR …

FSE 2016

IztechDependability2018

Selective Mutation
 One problem with measuring the effectiveness of selective mutation is the

very redundancy tha selective mutation is intended to tame.

 The redundant mutants introduce noise into mutation scores.

 For example

 Some mutants are killed by almost any test.

 Eliminating such mutants from consideration does not affect which test are chosen,

but does result in a different mutation score.

 Mutation score can be inflated by redundant mutants, making the mutation

score harder to interpret.

 Minimal mutation precisely defines redundancy among mutants by identifiying

dominator mutants.

 Dominator mutation scores are not consistent with traditional mutation scores

for some subset of mutation operators.

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

11

FSE 2016

IztechDependability2018

Mutant subsumption

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

12

All Tests

 Given a finite set of mutants M and a finite set of tests T, mutant mi is said to

dynamically subsume mutant mj (mi → mj)

 if some test in T kills mi and mj in M are killed by exactly the same tests in T, we say

that mi and mj are indistinguished.

Tests that kill mj

Tests that kill mi Tests that kill mk

mi → mj

[Ammann, et al., ICST 2014]

FSE 2016

IztechDependability2018

Mutant Subsumption Graphs

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

13

 Given the following score

function:

t1 t2 t3 t4

m1 ✓

m2

m3 ✓

m4 ✓ ✓

m5 ✓

m6 ✓

m7 ✓ ✓

m8 ✓ ✓ ✓ ✓

m9 ✓ ✓

m10 ✓ ✓ ✓ ✓

m1 m3,m6
m5 m2

m7,m9 m4

m8,m10

When we construct the mutant

subsumption graph from the score

function, we see three root nodes

that are not subsumed by any

other mutants. One mutant from

each of these nodes forms a

dominator set:

{ m1, m3, m5 }, { m1, m6, m5 }

All other mutants are redundant!

 Dynamic Mutant Subsumption

Graph (DMSG)

FSE 2016

IztechDependability2018

Dominator mutation score

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

14

 Assume we execute test t1

t1 t2 t3 t4

m1 ✓

m2

m3 ✓

m4 ✓ ✓

m5 ✓

m6 ✓

m7 ✓ ✓

m8 ✓ ✓ ✓ ✓

m9 ✓ ✓

m10 ✓ ✓ ✓ ✓

m1 m3,m6 m5 m2

m7,m9 m4

m8,m1

0

Killed mutants are shown in gray

Mutation score:

7 of 9 killable mutants = 0.78

Dominator score:

1 of 3 mutants in a dominator set = 0.33

The DMSG represents the subsumption relationship between all

mutants with respect to the test set. If we kill any mutant in

the DMSG, we are guaranated to kill all the mutants that it

subsumes.

FSE 2016

IztechDependability2018

Redundancy and equivalency

 We want to investigate how the accuracy changes as the number of

redundant and equivalent mutants change, we need a way to

measure redundancy and equivalency, preferably in a decoupled

manner

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

15

FSE 2016

IztechDependability2018

Mutation testing

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

16

 Mutation score has a non-linear

relationship with test completeness

 due to redundancy among mutants

 rendering it of limited usefulness for

determining how much testing work has

been comleted.

FSE 2016

IztechDependability2018

Research questions

 RQ1: How does redundancy and equivalency affect the amount of

work required to develop mutation-adequate tests?

 RQ2: Do the E-selective mutation operators reliably generated high

dominator mutation scores?

 RQ3: Is there a small set of mutation operators that improves upon E-

Selective and consistently generates higher dominator mutation scores

with low work ?

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

17

FSE 2016

IztechDependability2018

Case Study

 Siemens Suite Programs

 Proteum mutation tool

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

18

FSE 2016

IztechDependability2018

Testing model

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

19

MutantsMutantsAll Mutants
Select some

mutant set M

End

Find all mutants

killed by T

Begin

Select minimal

test set T that

kills M

Mutation

Scores

Dominator

Scores

Using selective mutation,

random mutants, or

some other technique

MutantsMutantsAll Tests

FSE 2016

IztechDependability2018

Testing model

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

20

MutantsMutantsAll Mutants
Select some

mutant set M

End

Find all mutants

killed by T

Begin

Select minimal

test set T that

kills M

Mutation

Scores

Dominator

Scores

MutantsMutantsAll Tests Nondeterministic

process

FSE 2016

IztechDependability2018

Testing model

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

21

MutantsMutantsAll Mutants
Select some

mutant set M

End

Find all mutants

killed by T

Begin

Select minimal

test set T that

kills M

Mutation

Scores

Dominator

Scores

MutantsMutantsAll Tests

#𝑚𝑢𝑡𝑎𝑛𝑡𝑠𝑘𝑖𝑙𝑙𝑒𝑑

#𝑚𝑢𝑡𝑎𝑛𝑡𝑠𝑡𝑜𝑡𝑎𝑙 − #𝑚𝑢𝑡𝑎𝑛𝑡𝑠𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡

#𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑠𝑘𝑖𝑙𝑙𝑒𝑑

#𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑠𝑡𝑜𝑡𝑎𝑙

FSE 2016

IztechDependability2018

RQ1: How redundant and equivalent mutants

affect work?

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

22

 How much effort is required?

 We use a simple definition: the number of mutants that a tester must examine

 To effectively compare work between different programs with different

numbers of mutants, we define normalized work:

𝑤𝑜𝑟𝑘 = 𝑡𝑒𝑠𝑡𝑆𝑒𝑡 + |𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑀𝑢𝑡𝑎𝑛𝑡𝑠|

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑊𝑜𝑟𝑘 =
 𝑡𝑒𝑠𝑡𝑆𝑒𝑡 + |𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑀𝑢𝑡𝑎𝑛𝑡𝑠|

 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟𝑆𝑒𝑡

FSE 2016

IztechDependability2018

Redundancy and Work

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322 23

Selecting increasing redundancy from 0 to 50 at increments of 5.

In Figure, where the columns show the mean normalized work and

error bars show the 2𝜎 variation in normalized work.

• With no redundancy, the normalized

work is 0.59

• As redundancy is increased, the mean

work increases only slightly

• With 50 times as many mutants, the

total effort to produce a mutation-

adequacy test set increases by only

20%

FSE 2016

IztechDependability2018

Equivalency and Work

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322
24

As equivalency is increased, the mean work increase linearly.

FSE 2016

IztechDependability2018

RQ2: Analyzing E-Selective Mutation

 Executed each program against a subsets of 512 tests.

 Created a score function for each analyzed program that shows

which test kill which mutants

 Identified all of the mutants created by E-Selective operators

 Determined a minimal set of tests that kill the non-equivalent

mutants using Monte Carlo approach.

 Each minimal test set guaranteed to kill the mutants of

interest.

 However, there may be many possible minimal test sets and

each one may have a different effect on the remaining

mutants.

 Consequently, we execute 10 runs for each mutation operator

combination to determine the average performance of the

operator combination.

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

25

FSE 2016

IztechDependability2018

Siemens suite scores
 Mutation and dominator score using the 5 E-Selective

mutation operators from Mothra [Offutt, et al., 1993]

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322
27

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Mutation Score

Dominator Score

[Ammann, et al., ICST 2014]

E-Selective Mutation

Operators

ABS - Absolute Value Insertation

AOR – Aritmethic Operator

Replacement

LCR - Logical Connector

replacement

ROR – Relational Operator

Replacement

UOI – Unary Operator Insertion

 The E-selective mutation operators do not produce
consistently high dominator mutation scores across a range
of programs.

FSE 2016

IztechDependability2018

RQ3: Improving upon E-Selective

Mutation

 We repeated the test-based process for all combinations of up to four

mutation operators for each program in the Siemens suite.

 Proteum has 78 operators, and taken one, two, three and four at a time total

over 1.5 million combinations.

 The programs actually used only 59 operators, which is still almost 500.000

combinations.

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

28

FSE 2016

IztechDependability2018

1-4 Operators for print_tokens

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

29

Optimal selective

operator combinations

for this program

231,525 operator combinations

FSE 2016

IztechDependability2018

1-4 Operators for Siemens suite

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

30

489,504 operator combinations

Operator combination

are far less optimal

for all programs

There is no set of up to 4 operators that is good for every program

FSE 2016

IztechDependability2018

Average / worst-case correlation

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

31

We generated wors-case scores for all

489,405 combinations of one to four

mutation operators.

Using Spearman’s rank correlation, we

found a strong positive monotonic

correlation between wors-case and

average case scores

With respect to question RQ3, we conclude that no sets of selective mutation

operators of any size consistency produce among of require work across a

range of programs.

FSE 2016

IztechDependability2018

Selective and random

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

32

Traditional mutant reduction approaches are not optimal, consistent with

prior research that selective and random are similar

FSE 2016

IztechDependability2018

Optimal selective solutions

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

33

Even the optimal operator combinations are not very good

FSE 2016

IztechDependability2018

Threats to validity

 The Siemens suite is a small number of small programs

 Are they really representative of real-world programs?

 Existence of unkilled (but killable) mutants injects errors into determining

dominator scores

 Specific operator sets identified as optimal may not be optimal, but broader points

are not affected

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

34

FSE 2016

IztechDependability2018Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

35

Conclusions

 Mutation score is an imprecise

metric inflated by redundant

mutants

 Researchers should use dominator

score instead

 Current mutant selection

techniques are not optimal

 There are no mutation operator

combinations that are effective for

a range of programs

 To optimize dominator score

per unit of work, we need to

customize mutants to the

program under test!

FSE 2016

IztechDependability2018Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322
36

Mutation testing in the future?

int max(int i, int j)
{
if (i > j) {
return i;

}
else {
return j;

}
}

1. Use machine

learning to generate

optimized mutants

based on program

features

2. Use static analysis

to determine partial

subsumption & tests

3. Execute tests to

refine subsumption

and kill mutants

4. Remove subsumed

mutants and

redundant tests

FSE 2016

IztechDependability2018
Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

37

int max(int i, int j)
{
if (i > j) {
return i;

}
else {
return j;

}
}

1. Use machine

learning to generate

optimized mutants

based on program

features

2. Use static analysis

to determine partial

subsumption & tests

3. Execute tests to

refine subsumption

and kill more

mutants

4. Remove subsumed

mutants and

redundant tests

5. Output a set of

tests and a FEW

probable-high-

value mutants for

the engineer to kill

int max(int i, int j)
{
if (i > j) {
return i;

}
else {
return i;

}
}

int max(int i, int j)
{
if (i > j) {
return --i;

}
else {
return j;

}
}

Mutation testing in the future?

FSE 2016

IztechDependability2018
Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

38

FSE 2016

IztechDependability2018

What’s an optimal solution?

 We score non-optimal points using the Hausdorff distance (dH), the distance

from the nearest optimal point

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

39

FSE 2016

IztechDependability2018

Today’s common techniques

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

40

Mutant Selection

Technique

Hausdorff Distance

(smaller is better)

SSDL 0.104

E-Selective 0.134

5% Random 0.150

10% Random 0.274

15% Random 0.147

20% Random 0.229

25% Random 0.111

FSE 2016

IztechDependability2018

Incrementally better

Bob Kurtz, Paul Ammann, Jeff Offutt, Márcio Eduardo Delamaro, Mariet Kurtz,and Nida Gökçe. 2016. Analyzing the

validity of selective mutation with dominator mutants. In Proceedings of the 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016. 571–582.

DOI:http://dx.doi.org/10.1145/2950290.2950322

41

 Operator set “A”

 9 mutation operators

 Same dominator score as E-
Selective

 Only 42% of the work

 Operator set “B”

 8 mutation operators

 Same work as E-Selective

 29% higher dominator score

 Operator set “C”

 14 mutation operators

 A knee in the curve

 None are as good as the best
solutions for a single program!

