Analyzing the Validity of Selective Mutation with Dominator Mutants

¹Bob Kurtz, ²Paul Ammann, ³Jeff Offutt, ⁴Márcio E. Delamaro, ⁵Mariet Kurtz, ⁶Nida Gökçe

Address:

^{1, 2, 3}Software Engineering George Mason University Fairfax VA, USA

⁴Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo São Carlos, SP, Brazil

⁵The MITRE Corporation McLean VA, USA

⁶Department of Statistics Muğla Sıtkı Koçman University Muğla, Turkey

E-Mail: ¹rkurtz2@gmu.edu, ²pammann@gmu.edu, ³offutt@gmu.edu, ⁴mkurtz@mitre.org, ⁵delamaro@icmc.usp.br, ⁶nidagokce@yahoo.com

Abstract

Various forms of selective mutation testing have long been accepted as valid approximations to full mutation testing. This paper presents counterevidence to traditional selective mutation. The recent development of dominator mutants and minimal mutation analysis lets us analyze selective mutation without the noise introduced by the redundancy inherent in traditional mutation. We then exhaustively evaluate all small sets of mutation operators for the Proteum mutation system and determine dominator mutation scores and required work for each of these sets on an empirical test bed. The results show that all possible selective mutation approaches have poor dominator mutation scores on at least some of these programs. This suggests that to achieve high performance with respect to full mutation analysis, selective approaches will have to become more sophisticated, possibly by choosing mutants based on the specifics of the artifact under test, that is, specialized selective mutation.

CCSConcepts •Software and its engineering \rightarrow Software testing and debugging;

Keywords Mutation analysis, subsumption, dominator mutants