
Towards Event Sequence Graph-based Testing
of Feature-oriented Software

Fevzi Belli

Tuğkan Tuğlular

Dilek Öztürk (presenter)

Preliminaries

How to define Feature-oriented Software?
Software products that have common features. These products vary with their different

features.

Preliminaries

What is the best way to develop Feature-oriented software?
Exploiting software reuse to develop the variants that have common

features.

Preliminaries

Developing feature-oriented software by taking advantage of software
reuse is risky because:

One reusable component fits one product variant perfectly where it
casuses severe faults within another. These products become poor

quality.

Preliminaries

How to assure quality of the variants?
Verifying and validating each variant.

Main Objective

To suggest an approach to systematically test potentially very large number of
product variants.

In order to achieve this, coupling feature diagrams with event sequence
diagrams for testing purposes.

Terms: Feature Diagram

Feature Model: Indicative model of variation points
among products.

Terms: Event Sequence Graph

Event Sequence Graph: Models the interactions
between a system and its user. It is used as a test-

generative model.

Running Example

MAGENTO: an e-trade software that has modules
resembling feature-oriented software product sets

Running Example
Magento’s Add New Product module has six product variants

that form a feature-oriented product set.

Simple, Bundle and Downloadable has been selected in
this study.

Running Example

Simple Product Bundle Product Downloadable

Product

Product Name ✓ ✓ ✓

Static SKU ✓ ✓

Dynamic SKU ✓

Static Price ✓

Dynamic Price ✓ ✓

Tax Class ✓ ✓

Approach
• A feature model is built to indicate

variation points among products.

• A full-ESG which represents overall
system behavior within product set is
constructed.

• The Feature Model and the ESG are
coupled.

• A variant-ESG is derived.

• Positive and negative test cases are
generated from variant-ESGs.

Indicative Example

Feature Model

Indicative Example

full-ESG

Indicative Example

Simple Product Bundle Product Downloadable

Product

Product Name ✓ ✓ ✓

Static SKU ✓ ✓

Dynamic SKU ✓

Static Price ✓

Dynamic Price ✓ ✓

Tax Class ✓ ✓

Indicative Example

Coupling of Feature Diagrams with Event Sequence Graphs

Indicative Example

Variant-ESG: Downloadable Product

Indicative Example

Simple Product Bundle Product Downloadable

Product

Product Name ✓ ✓ ✓

Static SKU ✓ ✓

Dynamic SKU ✓

Static Price ✓

Dynamic Price ✓ ✓

Tax Class ✓ ✓

Indicative Example

12: [, EnterProductName, EnterStaticSKU, EnterStaticSKU,
DisableDynamicPrice, DisableDynamicPrice, SelectTaxClass,
SelectTaxClass, DisableDynamicPrice, EnterStaticSKU, SelectTaxClass,
EnterStaticSKU, Save,]
3: [, EnterProductName, DisableDynamicPrice, Save,]
3: [, EnterProductName, SelectTaxClass, Save,]
3: [, EnterProductName, SelectTaxClass, Cancel,]
3: [, EnterProductName, EnterStaticSKU, Cancel,]
3: [, EnterProductName, DisableDynamicPrice, Cancel,]

The six positive and twenty three negative test cases form a test
suite for Downloadable Product.

Conclusion

RISK OF SOFTWARE REUSE

One reusable component fits perfectly to one variant
whereas it causes severe faults for another variant

Conclusion

To model variations and commonalities among products FEATURE MODEL

To generate test cases automatically EVENT SEQUENCE GRAPHS

Conclusion

OBJECTIVE
Building an automated testing for large sets of feature-oriented

software products.

APPROACH
Feature Diagrams and Event Sequence Graphs are coupled.

Possible Impacts of this study

• the productivity of companies
• quality of individual products
• percentage of component reuse
• the return on investments

• the cost
• the labor needs
• the time to release a product

INCREASES

DECREASES

References
[1] Weißleder, S. Lackner, H. (2013). Top-Down and Bottom-Up Approach for Model-Based Testing of
Product Lines. MBT, volume 111 of EPTCS, page 82-94. Electronic Proceedings in Theoretical Computer
Science (EPTCS) 111, pp. 82-94.
[2] Utting, M. Legeard, B. (2006). Practical Model-Based Testing: A Tools Approach. Morgan Kaufmann
Publishers Inc. San Francisco, CA, USA.
[3] Belli, F., Linschulte (2007), M., On 'Negative' Tests of Web Applications, Annals of Mathematics,
Computing & Teleinformatics, vol. 1, vol. 5, pp. 44-56.
[4] Magento. (n.d). Retrieved April,8 2017 from https://magento.com/products/community-edition
[5] TestSuiteDesigner. (n.d, Univ. of Paderborn, Angew. Datemtechnik). Retrieved April,8 20017 from
http://download.ivknet.de/ .
[6] Lochau, M. Oster, S. Goltz, U. Schürr, A. (2012) Model-based pairwise testing for feature interaction
coverage in software product line engineering. Software Quality Journal 20(3-4), pp. 567–604,
doi:10.1007/s11219-011-9165-4.
[7] Carnegie Mellon University (2012): Software Product Lines. Retrieved April,12 2017 from
http://www.sei.cmu.edu/productlines/
[8] Belli, F., Budnik, Ch. J., White, L. (2006), Event-based Modeling, Analysis and Testing of User
Interactions: Approach and Case Study, Software Testing, Verification and Reliability, vol. 16, 1, 3-32,
John Wiley & Sons, Ltd.
[9] Kang, K.C. and Cohen, S.G. and Hess, J.A. and Novak, W.E. and Peterson, A.S. (1990), Feature-
oriented domain analysis (FODA) feasibility study, Technical Report CMU/SEI-90-TR-021, SEI, Carnegie
Mellon University.
[10] D.B. West (1996), Introduction to Graph Theory, Prentice Hall.
[11] the balance: What Is a Stock Keeping Unit (SKU)? Retrieved May, 28 2017 from
https://www.thebalance.com/what-is-a-sku-in-retail-terms-2890158

