Model Checking of the Process Control Program for a Hydrogen Pilot Plant

Burak ÖKTEN Halit OĞUZTÜZÜN

METU, Ankara

IZTECH 4th Workshop on Dependability

21 May 2018

• OUTLINE

- 1. Introduction
- 2. Problem Statement
- 3. About Pilot Plant
- 4. System Model
- 5. Analysis
- 6. Conclusion & Future Work
- 7. References

- Hydrogen is a strong fuel candidate of future. It has many usage areas as a chemical reagent and as a rocket propellant.
- Today, one of the research areas of hydrogen usage is transportation.
- There are two common methods take place to produce hydrogen ¹:
 - Reforming / gasification of hydrocarbons such as methane (CH4) and methanol (CH3OH).
 - 2. Electrolysis of water (H2O).

1 Hydrogen 1.008

(1/4)

Why is hydrogen production safety critical?

- 1. Hydrogen is lighter than air and it has a very high diffusivity (20 m/s).
- 2. Hydrogen is odorless, colorless and tasteless.
- 3. Hydrogen can combust.
- 4. Hydrogen can cause explosions, if at least 10% oxygen is present.
- 5. Hydrogen can cause freeze burns when it is in liquid state at low pressure (-252.87°C and 1.013 bar)^{2,3}.

What can happen in a chemical plant if precautions are not enough to operate processes safely?

In 2005, an explosion at the BP Texas City Refinery caused <u>15</u> dead, <u>170 injured</u> and <u>over \$2 billion total cost!</u>

Main reason:

Overpressure in the blowdown drum due to overfilling of the distillation tower.

Why happened?

- Liquid level detection system was inaccurate.
- Ignoring the abnormal behaviour of control valves, alarms and level detectors.
- Lack of attention on system operation ⁴.

Figure 1. The explosion was catastrophic. *

* Retrieved from https://www.csb.gov/statement-of-chairperson-vanessa-allen-sutherland-on-the-12th-anniversary-of-the-bp-texas-city-refinery-disaster/ 6

PROBLEM STATEMENT

- Hydrogen production consists of a series of safety critical processes. Predicting extreme problematic states of these operations using simulations is difficult. Thus, model checking approaches should be evaluated ⁵.
- In this project, following cases were studied for APS Hydrogen Fuel Pilot Plant:
 - 1. Performing model checking to verify the safety features of the process control system using **Promela** and **iSpin**.
 - 2. Finding of possible process failures using the verification of the plant control logic.

• ABOUT PILOT PLANT

(1/3)

Figure 2. APS Hydrogen Pilot Plant, Phoenix, Arizona¹.

ABOUT PILOT PLANT

Highlights:

- Hydrogen is produced from high-purity water using electrolysis (18 kg / day).
- 2. Dryer removes water from hydrogen to reach 99.9999% purity.
- 3. Low pressure tank stores hydrogen (up to 20 kg) in 150 psig.
- 4. It is compressed to 5800 psi and stored (up to 20 kg each) in high-pressure tanks.
- 5. Hydrogen is transported to a tube trailer with a dispenser unit.
- 6. The system is monitored with proper sensors.
- 7. The plant is continuously scanned for infrared and ultraviolet radiation (signatures of a hydrogen flame).
- 8. Gas detectors are also used to monitor for flammable gases.
- 9. The EMS enables complete system shutdown automatically or manually ¹.

ABOUT PILOT PLANT

(3/3)

Figure 3. Process flowchart for the plant.

Following steps were performed to obtain system model:

- 1. Determining of the plant processes.
 - Hydrogen production.
 - Water removal from hydrogen (drying).
 - Compressing.
 - Storing.
 - Dispensing.
 - Venting.
- 2. Simplifying of these processes using plant P&ID.
 - Avoid adding unnecessary details. It causes increase of the state space and generally result doesn't change ⁵.
- 3. Preparing of relations and rules between operations and equipment.
- 4. Designing of system model.

- Promela language and iSpin tool were used to develop SPIN model of **process control program** and **all plant operations**.
- Event \rightarrow Sensor \rightarrow Controller \rightarrow Equipment

Figure 4. An example of a pressure control system.

- Rendezvous signals were used from sensors to controller and from controller to equipment.
- Assumptions:
 - The control program will work independently of the time (untimed model).
 - Safety related valves only.

Modelled equipment:

- 4 main units (Hogen, Dryer, PDC Compressor, and Dispenser).
- 10 safety valves.
- 13 sensors (UV/IR, CGD, LDS and pressure sensors).
- I Emergency Shutdown System.
- 1 main controller.
- I alarm and 1 callout systems.

(5/7)

```
proctype SV105() {
    bool msg;
    do
    :: ch_105_from ? msg ->
                if
                :: SV_105_ON ->
                        atomic {
                            SV 105 ON = false;
                            SV_105_H2 = false;
                            printf("SV105 IS OFF \n")
                        };
                        SV_106_H2 = false;
                        SV_107_H2 = false;
                        SV_109_H2 = false;
                        SV_110_H2 = false;
                        SV_111_H2 = false;
                        SV 112 H2 = false
                :: SV_105_ON ->
                        atomic {
                            sv105_fail = true;
                            printf("SV105 FAILED TO CLOSE \n")
                        }
                :: else -> skip
                fi
    od
```

Figure 5. Promela model of SV-105 valve.

```
(5/7)
```

```
proctype PT110_SENSOR() {
    do
    :: Disp_H2_P == _HIGH_ ->
        atomic {
            printf("PT110 DETECTED HIGH P ON DISPENSER H2 P \n");
            ch_pt_110_to ! true;
            ch_alarm_to ! _P1_
        }
    :: Disp_H2_P == _VHIGH_ ->
        atomic {
            printf("PT110 DETECTED VHIGH P ON DISPENSER H2 P \n");
            ch_pt_110_to ! true;
            ch_alarm_to ! _S1_
        }
        od
}
```

Figure 6. Promela models of PT-110 sensor and its controller.

Modelled events and states:

- LP Tank pressure level change.
- PDC Compressor leakage state.
- PDC Compressor outlet pressure level change.
- PDC Compressor to HPS pipeline pressure level change.
- PDC Compressor to vent stack state.
- HP Tank-1 and -2 pressure levels change.
- Dispenser pressure level change.
- HPS high flow state.
- Water removal state of Dryer.

```
(7/7)
```

```
proctype HPTank1() {
    do
    :: SV_107_H2 ->
            if
            :: HP_Tank_1_P == _NOR_ ->
                    atomic {
                        HP_Tank_1_P = _NOR_;
                        printf("HP TANK 1 P IS NORMAL \n")
            :: HP_Tank_1_P == _NOR_ ->
                    atomic {
                        HP_Tank_1_P = _HIGH_;
                        printf("HP TANK 1 P IS HIGH \n")
            :: (HP_Tank_1_P == _NOR_ || HP_Tank_1_P == _HIGH_) ->
                    atomic {
                        HP_Tank_1_P = _VHIGH_;
                        printf("HP TANK 1 P IS VERY HIGH \n")
                    };
                    goto exit
            fi
    :: !SV_107_H2 -> goto exit
   od;
   exit: skip
```

Figure 7. Promela model of HP Tank-1 pressure levels.

- Safety critical conditions of the system model must be verified via model checking.
- Use LTL (Linear Temporal Logic) to claim safety properties.

What is the minimum points of failure count?

- Minimum points of failure count \downarrow Process safety \downarrow
- Independence between failures ↑ Process safety ↑

Critical states with lesser points of failure and maximum dependence must be found.

Hydrogen Leakage on PDC Compressor

PDC Compressors are normally robust to leakage. However, water contamination in hydrogen can cause damage and leakage in compressor ¹.

Is hydrogen leakage a possible state for this system?

- Dryer is open \rightarrow water removal.
- What if there is a leak in compressor while Dryer is open?
- How to find this safety critical state?

Is there a state with PDC Compressor leakage while

- 1. Hogen, Dryer and PDC Compressor are open.
- 2. No Hogen and PDC Compressor fail.
- 3. Water contamination in hydrogen exists.
- 4. No valve fail except SV-101 (outlet valve of Dryer)?

Claim "p1" must be result with a counterexample:

(4/6)

Parameters given to SPIN for verification:

- Physical Memory Available: 6144 MB
- Estimated State Space Size: 8000 (states x 10³)
- Maximum Search Depth: 1000000 (steps)
- Hash factor: 1

Verification result:

- State-vector: 596 bytes
- Depth reached: 999999
- Errors (counterexample): 1
- Assertion violated at depth 173
- Hash factor: 1.139
- Equivalent memory usage for states: 4324.786 MB
- Elapsed time: 32.6 seconds

(5/6)

- It is found that there are **double points of failure** in the system!
- These failures are independent!

Different scenarios (with different claims) can show PDC Compressor leakage with more points of failure. Next animation gives a different scenario with **4 points of failure**.

(6/6)

- Analysis of different states with various claims showed that the system has mostly 4 or more points of failure.
- Fire and pipeline leakage states were found after 10,000 iterations as a result of tracing.
- Many critical states for HP tanks were discovered.
- Safety critical operations that trigger EMS activation were explored.

CONCLUSION & FUTURE WORK

- Model checking is a fast way to find safety critical states for chemical plants.
- Analyses show that minimum points of failure is 2 for the current system model.

In order to improve the system model:

- 1. Time dependence.
 - All processes can be prepared as time dependent.
- 2. Probabilistic approaches.
 - Any event can occur with a pre-defined probability. (e.g. which events are most likely to occur?)

• **REFERENCES**

- 1. Karner D, Franchfort J. Arizona Public Service Alternative Fuel (Hydrogen) Pilot Plant Design Report. INEEL/EXT-03-00976.
- Mazloomi K, Gomes C. Hydrogen as an energy carrier: Prospects and challenges. Renewable and Sustainable Energy Reviews 16 (2012) 3024– 3033.
- 3. Air Liquide. Storing Hydrogen. Retrieved from https://energies.airliquide.com/resources-planethydrogen/how-hydrogen-stored.
- 4. National Aeronautics and Space Administration. System Failure Case Studies. Vol. 2 Special Issue. Jan 2008.
- 5. Ben-Ari M. Principles of the Spin Model Checker. Springer, 2008.
- 6. Brinksma E, Mader A. Verification and Optimization of a PLC Control Schedule. 7th International SPIN Workshop, Stanford, CA, 2000.

